浏览全部资源
扫码关注微信
1.天津商业大学机械工程学院 天津 300134
2.华北电力大学能源动力与机械工程学院 北京 102206
刘圣春,男,教授,天津商业大学机械工程学院,13920682426,E-mail: liushch@tjcu.edu.cn。研究方向:相变储能及新能源利用;电池热管理;自然工质替代技术;制冷系统节能技术。
移动端阅览
王铁营, 刘松松, 苏远翔, 等. 双相变温度梯度宽温域锂电池热管理实验研究[J/OL]. 默认刊物名称, 2025.
Wang Tieying, Liu Songsong, Su Yuanxiang, et al. Experimental Study on Dual-PCM Gradient Thermal Management for Lithium-Ion Batteries with Wide Temperature Adaptability[J/OL]. Moren journal, 2025.
本研究提出了一种基于石蜡/膨胀石墨/竹炭复合双层相变材料的锂离子电池被动热管理新方法。为解决现有相变材料温控范围有限的问题,构建了双相变温度(30°C/50°C)梯度结构,并结合膨胀石墨的高导热性与竹炭的多孔吸附特性,开发了具有双相变温度调控功能的复合相变体系。实验结果表明,在40°C环境温度和5C大倍率工况下,采用双层相变材料的电池组温升比无相变材料组降低37.8%(43.3°C vs 69.6°C);在低温环境(-10°C和0°C)下,双层相变材料通过相变潜热释放与孔隙储热协同作用,拓宽了电池有效工作温度范围。该复合相变体系通过双相变机制实现了宽温域(-10°C~40°C)的智能热管理,为电池热安全调控提供了创新解决方案,具有显著的工程应用价值。
In this study
a new method for passive thermal management of lithium-ion batteries based on paraffin/expanded graphite/bamboo charcoal composite bilayer phase change materials is proposed. In order to solve the problem of limited temperature control range of existing phase change materials
a dual phase change temperature (30°C/50°C) gradient structure is constructed
and a composite phase change system with dual phase change temperature regulation is developed by combining the high thermal conductivity of expanded graphite with the porous adsorption properties of bamboo charcoal. The experimental results show that at 40°C ambient temperature and 5C large multiplication rate working condition
the temperature rise of the battery with the double-layer phase change material is 37.8% lower than that of the non-phase change material group (43.3°C vs. 69.6°C); at low temperatures (-10°C and 0°C)
the double-layer phase change material broadens the range of the battery's effective working temperature through the synergistic effect of latent heat release of the phase change and the heat storage in the pores. The composite phase change system realizes intelligent thermal management across a broad temperature spectrum (-10°C~40°C) through the dual-phase change mechanism
providing an innovative solution for thermal safety regulation of batteries
which has significant engineering application value.
DAI Xinyi , PING Ping , KONG Depeng , et al . Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation [J ] . Journal of Energy Chemistry , 2024 , 89 : 226 - 238 .
LYU Peizhao , LIU Xinjian , QU Jie , et al . Recent advances of thermal safety of lithium ion battery for energy storage [J ] . Energy Storage Materials , 2020 , 31 : 195 - 220 .
朱剑杰 , 庄园 , 欧阳洪生 , 等 . 浸没液体冷却技术在动力电池热管理中的应用研究进展 [J ] . 制冷学报 , 2025 .
ZHU Jianjie , ZHUANG Yuan , OUYANG Hongsheng , et al . The State of the Art of Immersion Liquid Cooling Technology for Power Battery Thermal Management Applications [J ] . Journal of refrigeration , 2025 .
SHEN Junjie , CHEN Xing , XU Xiaobin , et al . Thermal performance of a hybrid cooling plate integrated with microchannels and PCM [J ] . Applied Thermal Engineering , 2024 , 236 : 121917 .
VÄYRYNEN A , SALMINEN J . Lithium ion battery production [J ] . The Journal of Chemical Thermodynamics , 2012 , 46 : 80 - 85 .
CHEN Kai , CHEN Yiming , LI Zeyu , et al . Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system [J ] . International Journal of Heat and Mass Transfer , 2018 , 127 : 393 - 401 .
CHOMBO P V , LAOONUAL Y . A review of safety strategies of a Li-ion battery [J ] . Journal of Power Sources , 2020 , 478 : 228649 .
KONG Lingxi , LI Chuan , JIANG Jiuchun , et al . Li-Ion Battery Fire Hazards and Safety Strategies [J ] . 2018 , 11 ( 9 ): 2191 .
RANJBAR Kermani J , MAHLOUJI Taheri M , PAKZAD H , et al . Hybrid battery thermal management systems based on phase transition processes: A comprehensive review [J ] . Journal of Energy Storage , 2024 , 86 : 111227 .
刘仲康 , 张冠华 , 孙玥 . 基于复合相变材料的锂离子电池控温性能 [J ] . 新能源进展 , 2024 , 12 ( 06 ): 696 - 703 .
LIU Zhongkang , ZHANG Guanhua , SUN Yue . Temperature control performance of lithium-ion batteries based on composite phase change materials [J ] . New Energy Progress , 2024 , 12 ( 06 ): 696 - 703 .
LUO Jie , ZOU Deqiu , WANG Yinshuang , et al . Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review [J ] . Chemical Engineering Journal , 2022 , 430 : 132741 .
XUE Fei , QI Xiao-dong , HUANG Ting , et al . Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions [J ] . Chemical Engineering Journal , 2021 , 419 : 129620 .
LANDINI S , LEWORTHY J , O’DONOVAN T S . A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells [J ] . Journal of Energy Storage , 2019 , 25 : 100887 .
ZHAO Xiangyu , LEI Ke , WANG Shuo , et al . A shape-memory, room-temperature flexible phase change material based on PA/TPEE/EG for battery thermal management [J ] . Chemical Engineering Journal , 2023 , 463 : 142514 .
YANG Zi Liang , WALVEKAR Rashmi , WONG Weng Pin , et al . Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: A comprehensive review [J ] . Journal of Energy Storage , 2024 , 87 : 111329 .
陶文博 , 谢如鹤 . 有机相变蓄冷材料的研究进展 [J ] . 制冷学报 , 2016 , 37 ( 1 ): 52 - 59 .
TAO Wenbo , XIE Ruhe . Research and Development of Organic Phase Change Materials for Cool Thermal Energy Storage . [J ] . Journal of refrigeration , 2016 , 37 ( 1 ): 52 - 59 .
WANG Xiaonan , LI Wengui , LUO Zhiyu , et al . A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application [J ] . Energy and Buildings , 2022 , 260 : 111923 .
GULFAM Raza , ZHANG Peng , MENG Zhaonan , et al . Advanced thermal systems driven by paraffin-based phase change materials – A review [J ] . Applied Energy , 2019 , 238 : 582 - 611 .
HUANG Danyuan , WANG Zhibin , SHENG Xinxin , et al . Bio-based MXene hybrid aerogel/paraffin composite phase change materials with superior photo and electrical responses toward solar thermal energy storage [J ] . Solar Energy Materials and Solar Cells , 2023 , 251 : 112124 .
LIN Yaxue , JIA Yuting , ALVA Guruprasad , et al . Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable and Sustainable Energy Reviews [J ] . 2018 , 82 : 2730 - 2742 .
LI Junwei , ZHANG Hengyun . Thermal characteristics of power battery module with composite phase change material and external liquid cooling [J ] . International Journal of Heat and Mass Transfer , 2020 , 156 : 119820 .
朱孟帅 , 张华 , 闫勤学 , 等 . 泡沫金属填充率对相变材料强化换热的机理研究 [J ] . 制冷学报 , 2021 , 42 ( 5 ): 127 - 133 .
ZHU Mengshuai , ZHANG Hua , YAN Qinxue , et al . Study on the Effect of Foamed Metal Copper Filling Ratio on the Enhanced Heat Transfer Mechanism of Phase Change Materials . [J ] . Journal of refrigeration , 2021 , 42 ( 5 ): 127 - 133 .
BASHAR Mohammad , SIDDIQUI Kamran . Experimental investigation of transient melting and heat transfer behavior of nanoparticle-enriched PCM in a rectangular enclosure [J ] . Journal of Energy Storage , 2018 , 18 : 485 - 497 .
YAO Yuanpeng , WU Huiying . Thermal transport process of metal foam/paraffin composite (MFPC) with solid-liquid phase change: An experimental study [J ] . Applied Thermal Engineering , 2020 , 179 : 115668 .
RATHORE P K S , SHUKLA S K . Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review [J ] . Energy and Buildings , 2021 , 236 : 110799 .
YUE Xianfeng , ZHANG Rong , JIN Xiaobei , et al . Bamboo-derived phase change material with hierarchical structure for thermal energy storage of building [J ] . Journal of Energy Storage , 2023 , 62 : 106911 .
HUO Yingjie , YAN Ting , PAN Weiguo . Efficient solar thermal storage of foamy bamboo charcoal-based composite phase change materials [J ] . Solar Energy , 2024 , 268 : 112269 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构