引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 596次   下载 838 本文二维码信息
码上扫一扫!
基于分类器链的多联机软故障水平辨识研究
何宇轩1, 石靖峰2, 周镇新1, 陈焕新1, 任兆亭2, 夏兴祥2, 程亨达1
0
(1.华中科技大学能源与动力工程学院;2.青岛海信日立空调系统有限公司)
摘要:
多联机空调系统在建筑中已得到广泛应用,在多联机的运行中,软故障较为常见,且难以识别,使系统效率下降。本文以一维卷积神经网络作为基分类器,提出一种基于分类器链的多联机软故障水平辨识模型,使用室外机脏污故障的实验数据,以故障诊断模型为基础设置了基分类器的结构及参数,提出两种新的对数据标签的编码方式。在初步建立软故障水平辨识模型之后,对基分类器中的卷积核数量进行了进一步调整,并提出放大系数以改进标签的编码方式。结果表明:改进后的分类器链模型对室外机脏污故障的诊断准确率可达96%以上,提高2%~3%,且本文提出的编码方式不会将故障工况诊断为正常工况,适合在分类器链模型中使用。
关键词:  多联机  故障检测与诊断  故障程度辨识  分类器链  卷积神经网络
DOI:10.3969/j.issn.0253-4339.2023.05.050
投稿时间:2022-07-14  修订日期:2022-10-10  
基金项目:国家自然科学基金(51876070)资助项目。
Research on Identification of Soft-Fault Level in VRF System Based on Classifier Chain
He Yuxuan1, Shi Jingfeng2, Zhou Zhenxin1, Chen Huanxin1, Ren Zhaoting2, Xia Xingxiang2, Cheng Hengda1
(1.School of Energy and Power Engineering, Huazhong University of Science and Technology;2.Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd.)
Abstract:
Variable refrigerant flow (VRF) systems are widely used in buildings. Soft faults are common and difficult to identify during VRF operation, making the system less efficient. In this study, a soft-fault level identification model for VRF was proposed based on a classifier chain using one-dimensional convolutional neural networks as the base classifiers. The structure and parameters of the base classifiers were set according to a fault diagnosis model using the experimental data of fouling faults in the outdoor unit; two new methods for encoding data labels were proposed. After establishing the initial soft-fault level identification model, the number of convolution kernels in the base classifiers was further adjusted and a magnification factor was proposed to improve the label encoding. The results showed that the improved classifier chain model can diagnose fouling faults in the outdoor unit with an accuracy greater than 96%, corresponding to an increase of 2%–3% from the baseline. The encoding methods proposed in this study did not diagnose faulty conditions as normal and are suitable for use in the classifier chain model.
Key words:  variable refrigerant flow  fault detection and diagnosis  fault level identification  classifier chain  convolutional neural network

用微信扫一扫

用微信扫一扫