
浏览全部资源
扫码关注微信
1.低温科学与技术全国重点实验室 中国科学院理化技术研究所 北京 100190
2. 中国科学院大学未来技术学院 北京 100049
3. 北京空间飞行器总体设计部 航天器热控全国重点实验室 北京 100094
张旭东,男,研究员,中国科学院理化技术研究所,010-82543763,E-mail:xdzhang@mail.ipc.ac.cn。研究方向:芯片热管理,液态金属传热。
刘静,男,研究员,中国科学院理化技术研究所,010-82543765,E-mail:jliu@mail.ipc.ac.cn。研究方向:液态金属物质科学,微/纳尺度传热学,低温生物医学与肿瘤热疗物理学。
收稿:2025-10-30,
修回:2025-11-17,
录用:2025-11-18,
纸质出版:2026-02-16
移动端阅览
史佳豪,张旭东,杨敏等.太空数据中心热控技术研究现状与展望[J].制冷学报,2026,47(01):1-19.
Shi Jiahao,Zhang Xudong,Yang Min,et al.Thermal Management Technologies for Space Data Centers: Current Status and Prospects[J].Journal of Refrigeration,2026,47(01):1-19.
史佳豪,张旭东,杨敏等.太空数据中心热控技术研究现状与展望[J].制冷学报,2026,47(01):1-19. DOI: 10.12465/issn.0253-4339.20251030004. CSTR: XXXXX.XX.XXX.20251030004.
Shi Jiahao,Zhang Xudong,Yang Min,et al.Thermal Management Technologies for Space Data Centers: Current Status and Prospects[J].Journal of Refrigeration,2026,47(01):1-19. DOI: 10.12465/issn.0253-4339.20251030004. CSTR: XXXXX.XX.XXX.20251030004.
太空数据中心利用24 h太阳能与超低温环境实现计算能耗降低和效率提升,将为大规模航天任务与人工智能训练提供革命性算力支持。高效轻量化的热控系统是大功率太空数据中心的核心分系统之一,现有的航天器热控技术分为被动与主动2类,被动技术依赖自然势差构建基础热平衡,而主动技术则通过外部能量驱动来增强热控性能和调控灵活性。本文从太空数据中心发展趋势、太空热环境、航天器被动热控技术、航天器主动热控技术、太空数据中心热控技术展望5部分进行介绍。未来,需发展MW级散热功率、轻量化、在轨维护方便的热控分系统,以支撑太空数据中心向更高功率和更低成本方向的迫切需求。
Significance
2
The rapid expansion of artificial intelligence, large satellite constellations, and deep-space exploration is reshaping global demand for computing infrastructure. On Earth, the continued scaling of data centers has resulted in a sharp rise in energy consumption and increasingly severe thermal constraints, driven by limitations in power supply and cooling efficiency. In the space domain, observation platforms and interplanetary missions generate a growing volume of raw data; however, their heavy reliance on downlink-based processing remains constrained by limited bandwidth and communication latency. These parallel trends have stimulated growing interest in space data centers as a means of deploying computing capabilities directly in orbit or deep space. An early conceptualization of space data centers and their enabling technologies was proposed in late 2011 by researchers at the Chinese Academy of Sciences, accompanied by a patent (CN201110452453.4). By exploiting near-continuous solar power and the cold environment of space, space data centers offer a potential pathway to reducing the overall energy cost of computation while enabling on-orbit data processing, prioritization, and storage. Their practical realization, however, is fundamentally constrained by thermal management technology. The combination of high power density, distributed heat sources, extended heat transport distances, and microgravity-induced flow instability places thermal management at the core of system design. Rather than serving as an auxiliary function, thermal control directly determines system reliability, mass efficiency, and the extent to which space data centers can be scaled beyond early demonstrators.
Progress
2
Thermal control technologies for space data centers can be broadly categorized into passive and active approaches, which together establish baseline thermal balance and provide enhanced heat transport and regulation capabilities. Passive thermal control techniques, including heat pipes, thermal interface materials (TIMs), phase change materials (PCMs), radiators, and thermal control coatings, rely on conduction, radiation, and latent heat buffering to stabilize system temperatures with minimal energy input. Advances in variable-conductance heat pipes and loop heat pipes have improved temperature regulation and long-distance heat transport, while emerging TIMs emphasize reduced contact resistance, radiation tolerance, and long-term stability. PCMs are increasingly integrated with heat spreaders and vapor chambers to buffer cyclic and transient thermal loads, and radiator technologies are evolving toward lightweight, variable-emissivity designs capable of dynamically responding to orbital environments. Active thermal control technologies play an indispensable role as input power and thermal load increase. Mechanically pumped fluid loops and pump-driven two-phase convection systems use circulating working fluids to transport large amounts of heat away from concentrated sources, offering higher heat transport capacity and improved temperature uniformity. Significant progress has been achieved in multi-kilowatt-class systems through improvements in pump reliability, accumulator design, and two-phase flow stability in a microgravity environment. Complementary active components, including heaters, thermoelectric coolers, and thermal switches, enable precise local temperature regulation, low-temperature survival in extreme environments, and adaptive control of thermal pathways. Collectively, these technologies have been validated on platforms such as space stations, planetary probes, and high-power satellites, providing a technical foundation for future space data center deployment.
Conclusion and Prospect Current thermal control strategies for space data centers are largely based on the combined use of passive and active approaches and have so far supported systems with power levels on the order of several tens of kilowatts. As computing capacity continues to expand, however, these approaches are approaching their intrinsic limits. At the hundreds-of-kilowatts and megawatt levels, constraints associated with radiative heat rejection, system mass growth, and controllability under variable operating conditions are expected to intensify, placing thermal management at the core of system-level scalability. Further advancement demands integrated thermal architectures that address heat generation, transport, storage, and rejection in a coordinated manner across multiple spatial and temporal scales. Progress in microgravity two-phase heat transfer, compact thermal energy storage, and lightweight radiators with controllable emissivity will be particularly critical, alongside the development of thermal materials that combine ultralow thermal resistance with long-term tolerance to the space environment. Cutting-edge thermal management strategies, such as liquid metal cooling, are expected to play increasingly important roles in addressing the extreme heat flux challenges posed by AI chips. Advances in these directions will be decisive in determining whether space data centers can evolve from early demonstrations into a robust and scalable computing infrastructure for future space missions.
周峰 , 王芮敏 , 马国远 , 等 . 我国数据中心碳中和路径情景分析 [J]. 制冷学报 , 2025 , 46 ( 1 ): 79 - 85 .
ZHOU Feng , WANG Ruimin , MA Guoyuan , et al . Scenario analysis of data centers in China under carbon neutrality target [J]. Journal of Refrigeration , 2025 , 46 ( 1 ): 79 - 85 .
刘静 , 代丹 . 一种太空数据中心 : 201110452453.4 [P]. 2011-12-29 .
LIU Jing , DAI Dan . A space data center : 201110452453.4 [P]. 2011-12-29 .
刘贵林 , 尹钊 , 杨金禄 , 等 . 低贝克莱数液态金属对流换热特性在轨微重力实验 [J]. 宇航学报 , 2025 , 46 ( 2 ): 389 - 394 .
LIU Guilin , YIN Zhao , YANG Jinlu , et al . Micro-gravity experiments on liquid metal convective heat transfer in space with low peclet number [J]. Journal of Astronautics , 2025 , 46 ( 2 ): 389 - 394 .
AILI A , CHOI J , ONG Y S , et al . The development of carbon-neutral data centres in space [J/OL]. Nature Electronics , 2025 : 1 - 11 [ 2025-10-27 ]. https://doi.org/10.1038/s41928-025-01476-1 https://doi.org/10.1038/s41928-025-01476-1 .
FEILDEN E , OLTEAN A , JOHNSTON P . Why we should train AI in space [R/OL]. ( 2024-09 )[ 2025-10-12 ]. https://api.semanticscholar.org/CorpusID:275461783 https://api.semanticscholar.org/CorpusID:275461783 .
范含林 . 空间环境对航天器热设计影响分析 [J]. 航天器环境工程 , 2008 , 25 ( 3 ): 220 - 223 .
FAN Hanlin . Influence of space environment on the thermal design of spacecraft [J]. Spacecraft Environment Engineering , 2008 , 25 ( 3 ): 220 - 223 .
YANG Chengfu , WANG C H , KE Peixiu , et al . Development and fabrication of a multi-layer planar solar light absorber achieving high absorptivity and ultra-wideband response from visible light to infrared [J]. Nanomaterials , 2024 , 14 ( 11 ): 930 .
俞国新 , 周一欣 , 张祉祐 . 加四方镀铝箔片的真空粉末绝热传热过程的研究 [J]. 制冷学报 , 1989 , 10 ( 3 ): 7 - 13 .
YU Guoxin , ZHOU Yixin , ZHANG Zhiyou . Researches on heat transfer process in evacuated powder insulation with squar aluminium-coated flakes [J]. Journal of Refrigeration , 1989 , 10 ( 3 ): 7 - 13 .
郭晨玥 , 潘浩丹 , 徐琪皓 , 等 . 天空辐射制冷技术发展现状与展望 [J]. 制冷学报 , 2022 , 43 ( 3 ): 1 - 14 .
GUO Chenyue , PAN Haodan , XU Qihao , et al . Current status and future perspectives of radiative sky cooling [J]. Journal of Refrigeration , 2022 , 43 ( 3 ): 1 - 14 .
于雯 , 李雄耀 , 王世杰 . 月球探测中月面热环境影响的研究现状 [J]. 地球科学进展 , 2012 , 27 ( 12 ): 1337 - 1343 .
YU Wen , LI Xiongyao , WANG Shijie . Effect of thermal environment on lunar exploration: a review [J]. Advances in Earth Science , 2012 , 27 ( 12 ): 1337 - 1343 .
欧阳自远 , 肖福根 . 火星探测的主要科学问题 [J]. 航天器环境工程 , 2011 , 28 ( 3 ): 205 - 217 .
OUYANG Ziyuan , XIAO Fugen . Major scientific issues involved in Mars exploration [J]. Spacecraft Environment Engineering , 2011 , 28 ( 3 ): 205 - 217 .
HESS S L , HENRY R M , LEOVY C B , et al . Meteorological results from the surface of Mars: viking 1 and 2 [J]. Journal of Geophysical Research , 1977 , 82 ( 28 ): 4559 - 4574 .
苗建印 , 钟奇 , 赵啟伟 , 等 . 航天器热控制技术 [M]. 北京 : 北京理工大学出版社 , 2018 .
MIAO Jianyin , ZHONG Qi , ZHAO Qiwei , et al . Spacecraft thermal control technology [M]. Beijing : Beijing Insititute of Technology Press , 2018 .
CLEARY M , NORTH M T , VAN LIESHOUT M , et al . Reduced power precision temperature control using variable conductance heat pipes [J]. IEEE Transactions on Components , Packaging and Manufacturing Technology , 2013 , 3 ( 12 ): 2048 - 2058 .
TARAU C , ABABNEH M , ANDERSON W , et al . Advanced passive thermal eXperiment (APTx) for warm reservoir hybrid wick variable conductance heat pipes on the International Space Station [C]// Proceedings of the 48th International Conference on Environmental Systems . 2018 .
SLOBODENIUK M , AYEL V , BERTOSSI R , et al . Experimental analysis of the fluid flow in the flat plate pulsating heat pipe under microgravity conditions [C]// International Symposium on Oscillating/Pulsating Heat Pipes . Daejeon, Korea , 2019 .
TANG Heng , TANG Yong , LI Jie , et al . Experimental investigation of the thermal performance of heat pipe with multi-heat source and double-end cooling [J]. Applied Thermal Engineering , 2018 , 131 : 159 - 166 .
VASILIEV L L , VASILIEV L L . The sorption heat pipe—a new device for thermal control and active cooling [J]. Superlattices and Microstructures , 2004 , 35 ( 3-6 ): 485 - 495 .
MISHKINIS D , WANG Guanghan , NIKANPOUR D , et al . Advances in two-phase loop with capillary pump technology and space applications [J]. SAE Transactions , 2005 , 114 ( 1 ): 233 - 250 .
VAN ES J , PAUW A , VAN DONK G , et al . AMS02 Tracker thermal control system overview and spin-off for future spacecraft cooling system developments [R]. National Aerospace Laboratory NLR , 2009 .
赵石磊 , 高腾 , 杨涛 , 等 . 环路热管精密控温性能的热真空实验研究 [J]. 制冷学报 , 2020 , 41 ( 1 ): 154 - 160 .
ZHAO Shilei , GAO Teng , YANG Tao , et al . Thermal vacuum test on the precise temperature controlling performance of loop heat pipe [J]. Journal of Refrigeration , 2020 , 41 ( 1 ): 154 - 160 .
宫华耀 , 何成军 , 杜明龙 , 等 . 空调变频基板制冷剂散热的关键技术研究 [J]. 制冷学报 , 2019 , 40 ( 2 ): 62 - 67 .
GONG Huayao , HE Chengjun , DU Minglong , et al . Study on key technology of refrigerant cooling to the frequency conversion board in air conditioning [J]. Journal of Refrigeration , 2019 , 40 ( 2 ): 62 - 67 .
BARAKO M T , GAMBIN V , TICE J . Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications [J]. Nanotechnology , 2018 , 29 ( 15 ): 154003 .
ZHANG Yifan , LIAO Chunyan , QIN Junjun , et al . Selection of high-performance thermal interface materials for space payload applications [J]. Case Studies in Thermal Engineering , 2025 , 71 : 106203 .
WU Qi , LI Wenjun , LIU Chang , et al . Carbon fiber reinforced elastomeric thermal interface materials for spacecraft [J]. Carbon , 2022 , 187 : 432 - 438 .
SAYER R A , KOEHLER T P , DALTON S M , et al . Thermal contact conductance of radiation-aged thermal interface materials for space applications [C]// ASME 2013 Heat Transfer Summer Conference . Minneapolis, Minnesota, USA , 2013 : V003T10A002 .
GLASGOW S D , KITTREDGE K B . Performance testing of thermal interface filler materials in a bolted aluminum interface under thermal/vacuum conditions [R]. NASA/TM-2003-212500. Huntsville, AL: George C. Marshall Space Flight Center, NASA, 2003.
SUH J-O , DILLON R P , TSENG S . Thermal interface materials selection and application guidelines: in perspective of Xilinx Virtex-5QV thermal management [R]. JPL-Publ-15-02 . Pasadena, CA : Jet Propulsion Laboratory, California Institute of Technology , 2015 .
GANDHI J S , PATHAK A V . Performance evaluation of thermal interface material for space applications [J]. Applied Mechanics and Materials , 2011 , 110-116 : 135 - 141 .
VRABLE D L , VRABLE M D . Space-based radar antenna thermal control [C]// AIP Conference Proceedings . 2001 , 552 ( 1 ): 277 - 282 .
YAMADA K , NAGANO H , KOBAYASHI Y , et al . Heat storage panel using a phase-change material encapsulated in a high-thermal conductivity CFRP for micro satellites [C]// Proceedings of the 44th International Conference on Environmental Systems (ICES-2014- 119 . Tucson, Arizona, USA, 2014 .
ISAACS S , ARIAS D A , SHOUKAS G . Development of a lightweight and low-cost 3D-printed aluminum and PCM panel for thermal management of CubeSat applications [C]// Proceedings of the 47th International Conference on Environmental Systems (ICES-2017- 108 . Charleston, CarolinaSouth, USA, 2017 .
DESAI T G , PIEDRA D , BONNER R , et al . Novel junction level cooling in pulsed GaN devices [C]// 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems . San Diego, CA, USA : IEEE , 2012 : 421 - 427 .
IZENSON M G , KNAUS D A , O'NEILL L E . Thermal storage for high-power small satellites [C]// 34th Annual Small Satellite Conference (SSC20-W K1 - 08 ). 2020 .
MADHAV H V , RAGHAVENDRA V , KUMAR P , et al . Development of a canister module for PCM coupled heat pipe in spacecraft thermal management [J]. IEEE Transactions on Components , Packaging and Manufacturing Technology , 2021 , 11 ( 11 ): 1804 - 1815 .
LEE K L , TARAU C , VAN VELSON N . Development of a heat exchanger with integrated thermal storage for spacecraft thermal management applications [C]// Proceedings of the 47th International Conference on Environmental Systems (ICES-2017- 162 . Charleston, CarolinaSouth, USA, 2017 .
YUN J , TARAU C , VAN VELSON N . Status of the development of a vapor chamber with phase change material-based wick structure [C]// Proceedings of the 46th International Conference on Environmental Systems (ICES-2016- 219 . Vienna, Austria, 2016 .
HARTSFIELD C R , SHELTON T E , PALMER B O , et al . All-metallic phase change thermal management systems for transient spacecraft loads [J]. Journal of Aerospace Engineering , 2020 , 33 ( 4 ): 04020039 .
张旭东 , 杨昌鹏 , 于新刚 , 等 . 面向航天应用的液态金属相变传热性能研究 [J]. 宇航材料工艺 , 2021 , 51 ( 6 ): 17 - 23 .
ZHANG Xudong , YANG Changpeng , YU Xingang , et al . Phase change heat transfer performance of liquid metal for space equipment thermal control [J]. Aerospace Materials & Technology , 2021 , 51 ( 6 ): 17 - 23 .
RAJ C R , SURESH S , BHAVSAR R R , et al . Influence of fin configurations in the heat transfer effectiveness of Solid solid PCM based thermal control module for satellite avionics: numerical simulations [J]. Journal of Energy Storage , 2020 , 29 : 101332 .
RAJ C R , SURESH S , SINGH V K , et al . Experimental investigation on nanoalloy enhanced layered perovskite PCM tamped in a tapered triangular heat sink for satellite avionics thermal management [J]. International Journal of Thermal Sciences , 2021 , 167 : 107007 .
HENGEVELD D W , WILSON M R , MOULTON J A , et al . Thermal design considerations for future high-power small satellites [C]// Proceedings of the 48th International Conference on Environmental Systems . Albuquerque(ICES-2018- 77 ), MexicoNew, USA, 2018 .
BERTAGNE C L , COGNATA T J , SHETH R B , et al . Testing and analysis of a morphing radiator concept for thermal control of crewed space vehicles [J]. Applied Thermal Engineering , 2017 , 124 : 986 - 1002 .
UENO A , YAMADA K , MIYATA K , et al . Proposal of functional thermal control systems for high-power micro-satellite and its demonstration under thermal vacuum condition [J]. Journal of Electronics Cooling and Thermal Control , 2018 , 8 ( 1 ): 1 - 17 .
CAO Shengzhu , CHEN Xuekang , WU Gan , et al . Variable emissivity surfaces for micro and nano-satellites [J]. Physics Procedia , 2011 , 18 : 91 - 94 .
UENO A , SUZUKI Y . Parylene-based active micro space radiator with thermal contact switch [J]. Applied Physics Letters , 2014 , 104 ( 9 ): 093511 .
ZHOU Ding , XIE Dong , XIA Xinhui , et al . All-solid-state electrochromic devices based on WO 3 ||NiO films: material developments and future applications [J]. Science China Chemistry , 2017 , 60 ( 1 ): 3 - 12 .
TAYLOR S , BOMAN N , CHAO J , et al . Cryothermal vacuum measurement of thermochromic variable-emittance coatings with heating/cooling hysteresis for spacecraft thermal management [J]. Applied Thermal Engineering , 2021 , 199 : 117561 .
EDWARDS D L , ZWIENER J M , WERTZ G E , et al . Radiation-induced degradation of the white thermal control paints Z-93 and Z-93P [R]. Marshall Space Flight Center, AL : George C . Marshall Space Flight Center, NASA , 1996 .
ANDERSON W , SARRAF D , DUSSINGER P , et al . Development of a high-temperature water heat pipe radiator [C]// 3rd International Energy Conversion Engineering Conference . San Francisco, California : AIAA , 2005 : 5633 .
KIM T Y , HYUN B S , LEE J J , et al . Numerical study of the spacecraft thermal control hardware combining solid–liquid phase change material and a heat pipe [J]. Aerospace Science and Technology , 2013 , 27 ( 1 ): 10 - 16 .
侯增祺 , 胡金刚 . 航天器热控制技术——原理及其应用 [M]. 北京 : 中国科学技术出版社 , 2008 : 129 - 140 .
HOU Zengqi , HU Jingang . Spacecraft thermal control technology—principles and applications [M]. Beijing : China Science and Technology Press , 2008 : 129 - 140 .
JOSHI S C . Outgassing studies on thermal control coatings for micro-satellites [J]. Aircraft Engineering and Aerospace Technology , 2011 , 83 ( 2 ): 69 - 74 .
FINCKENOR M . The materials on international space station experiment (MISSE): first results from MSFC investigations [C]// 44th AIAA Aerospace Sciences Meeting and Exhibit . Reno, Nevada : AIAA , 2006 : 472 .
MIYAZAKI E , ISHIZAWA J , SHIMAMURA H . Evaluation of F-OSR exposed to space on SM/SEED experiment [R]. JAXA , 2009 .
刘东晓 , 宁献文 . 空间泵驱单相流体回路半物理仿真技术研究 [J]. 航天器环境工程 , 2024 , 41 ( 4 ): 414 - 420 .
LIU Dongxiao , NING Xianwen . Research on hardware-in-the-loop simulation technology for space pumped single-phase fluid loop [J]. Spacecraft Environment Engineering , 2024 , 41 ( 4 ): 414 - 420 .
VAN BENTHEM R C , DE GRAVE W , VAN ES J , et al . Development of a mechanically pumped fluid loop for 3 to 6 kW payload cooling [C]// The 39th International Conference on Environmental Systems . Savannah (GA), USA , 2009 .
VAN ES J , GANZEBOOM T , VAN DEN BERG T H , et al . Mini mechanically pumped loop modelling, design and tests for standardized CubeSat thermal control [C]// Proceedings of the 50th International Conference on Environmental Systems (ICES-2021- 39). 2021 .
ANDERSON L , SWENSON C , MASTROPIETRO A J , et al . The active CroCubeSat project: design and status [C]// 31st Annual AIAA/USU Conference on Small Satellites . 2017 .
于新刚 , 孟繁孔 , 韩海鹰 , 等 . 我国载人航天器热控制技术发展 [J]. 航天器工程 , 2022 , 31 ( 6 ): 156 - 165 .
YU Xingang , MENG Fankong , HAN Haiying , et al . Review of thermal control technology in China manned space program [J]. Spacecraft Engineering , 2022 , 31 ( 6 ): 156 - 165 .
GUO Dong , XIE Ming , XIA Xinlin , et al . Design and on-orbit performance of the payload rack thermal management system for China space station experimental lab module [J]. Applied Sciences , 2024 , 14 ( 7 ): 2938 .
VAN BENTHEM R C , VAN ES J , VAN GERNER H J , et al . Valve-less mechanically pumped fluid loop (MPFL) using East and West panels of a large telecommunication satellite as radiator [C]// 45th International Conference on Environmental Systems . Bellevue, Washington , 2015 .
WANG Jixiang , LI Yunze , ZHANG Hongsheng , et al . A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management [J]. Energy Conversion and Management , 2016 , 111 : 57 - 66 .
IWATA N , NAKANOYA S , NAKAMURA N , et al . Thermal performance evaluation of space radiator for single-phase mechanically pumped fluid loop [J]. Journal of Spacecraft and Rockets , 2022 , 59 ( 1 ): 225 - 235 .
DELIL A A M . Current mechanically pumped two-phase thermal control loop developments [R]. SAE Technical Paper, 2004-01-2507 , 2004 .
ZHANG Z , SUN X H , TONG G N , et al . Stable and self-adaptive performance of mechanically pumped CO 2 two-phase loops for AMS-02 tracker thermal control in vacuum [J]. Applied Thermal Engineering , 2011 , 31 ( 17/18 ): 3783 - 3791 .
MERINO A S , HUGON J , CAILLOCE Y , et al . Development of a two-phase mechanically pumped loop(2MPDL) for the thermal dissipation management of an active antenna [C]// 40th International Conference on Environmental Systems . Barcelona, Spain , 2010 : 6032 .
张红星 , 苗建印 , 王录 , 等 . 嫦娥三号两相流体回路的地面试验验证方法及试验结果分析 [J]. 中国科学: 技术科学 , 2014 , 44 ( 6 ): 589 - 596 .
ZHANG Hongxing , MIAO Jianyin , WANG Lu , et al . Ground test method and results of closed two-phase thermosyphons for the moon exploration spacecraft Chang'E-3 [J]. Scientia Sinica (Technologica) , 2014 , 44 ( 6 ): 589 - 596 .
于新刚 , 徐侃 , 苗建印 , 等 . 高热流散热泵驱两相流体回路设计及飞行验证 [J]. 宇航学报 , 2017 , 38 ( 2 ): 192 - 197 .
YU Xingang , XU Kan , MIAO Jianyin , et al . Design and on-board validation of pumped two-phase fluid loop for high heat flux removal [J]. Journal of Astronautics , 2017 , 38 ( 2 ): 192 - 197 .
刘庆志 , 杨昌鹏 , 徐侃 , 等 . 空间大功率热源两相温控系统设计与仿真 [J]. 中国空间科学技术 , 2023 , 43 ( 4 ): 104 - 110 .
LIU Qingzhi , YANG Changpeng , XU Kan , et al . Design and simulation of two-phase thermal control system for space high power source [J]. Chinese Space Science and Technology , 2023 , 43 ( 4 ): 104 - 110 .
孟庆亮 , 赵振明 , 陈祥贵 , 等 . 航天遥感器用泵驱两相流体回路热真空试验研究 [J]. 北京航空航天大学学报 , 2023 , 49 ( 3 ): 559 - 568 .
MENG Qingliang , ZHAO Zhenming , CHEN Xianggui , et al . Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor [J]. Journal of Beijing University of Aeronautics and Astronautics , 2023 , 49 ( 3 ): 559 - 568 .
孟庆亮 , 韦广朗 , 于峰 , 等 . 航天器用机械泵驱动两相流体回路在轨测试性能分析 [J]. 中国空间科学技术(中英文) , 2025 , 45 ( 4 ): 70 - 78 .
MENG Qingliang , WEI Guanglang , YU Feng , et al . Performance analysis of on-orbit testing of mechanically pumped two-phase loop for spacecraft [J]. Chinese Space Science and Technology , 2025 , 45 ( 4 ): 70 - 78 .
杨贵 , 李晨 , 彭帅 . 航天器用耐辐照型薄膜电加热器及其制造工艺 : 111526614A [P]. 2020-08-11 .
YANG Gui , LI Chen , PENG Shuai . Radiation-resistant thin-film electric heater for spacecraft and its manufacturing process : 111526614A [P]. 2020-08-11 .
PARK T Y , CHAE B G , KIM H , et al . New thermal design strategy to achieve an 80-kg-class lightweight X-band active SAR small satellite S-STEP [J]. Aerospace , 2021 , 8 ( 10 ): 278 .
GOEBEL D M , WATKINS R M , JAMESON K K . LaB 6 hollow cathodes for ion and Hall thrusters [J]. Journal of Propulsion and Power , 2007 , 23 ( 3 ): 552 - 558 .
POZO B , MACHÓN L , CANTERO D , et al . Smart heaters based on flexible electronics for future spacecrafts [C]// IOP Conference Series: Materials Science and Engineering , 2023 , 1287 ( 1 ): 012016 .
BENNETT G . Space nuclear power: opening the final frontier [C]// 4th International Energy Conversion Engineering Conference and Exhibit (IECEC) . San Diego, California : AIAA , 2006 : 4191 .
ZAKRAJSEK J F , WOERNER D F , CAIRNS-GALLIMORE D , et al . NASA's radioisotope power systems planning and potential future systems overview [C]// 2016 IEEE Aerospace Conference . Big Sky, MT, USA : IEEE , 2016 : 1 - 10 .
CATALDO R L , BENNETT G L . U.S. space radioisotope power systems and applications: past, present and future [M]. USA : Glenn Research Center , 2011 .
PUSTOVALOV A . Role and prospects of application of RTG on base of plutonium-238 for planetary exploration [C]// Proceedings of the 5th European Conference on Thermoelectrics . Odessa, Ukraine , 2007 .
牛厂磊 , 唐显 , 李鑫 , 等 . 238 Pu同位素热/电源的发展及展望 [J]. 原子能科学技术 , 2020 , 54 ( 增刊1 ): 342 - 350 .
NIU Changlei , TANG Xian , LI Xin , et al . Development and prospect of RHU/RTG [J]. Atomic Energy Science and Technology , 2020 , 54 ( Suppl.1 ): 342 - 350 .
AMBROSI R M , WILLIAMS H , WATKINSON E J , et al . European radioisotope thermoelectric generators (RTGs) and radioisotope heater units (RHUs) for space science and exploration [J]. Space Science Reviews , 2019 , 215 : 55 .
MORALES DE LOS RÍOS J A , JOVEN E , DEL PERAL L , et al . The infrared camera prototype characterization for the JEM-EUSO space mission [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 , 749 : 74 - 83 .
SEMENA N P . The features of application of thermoelectric converters in spacecraft systems of temperature control [J]. Thermophysics and Aeromechanics , 2013 , 20 ( 2 ): 211 - 222 .
SERBINOV D V , SEMENA N P , PAVLINSKY M N . Opposite radiators used for thermostabilizing of X-ray detectors of the all-sky monitor to be installed on the ISS [J]. Journal of Engineering Thermophysics , 2017 , 26 ( 3 ): 366 - 376 .
GUO Dongcai , SHENG Qiang , DOU Xiangyu , et al . Application of thermoelectric cooler in temperature control system of space science experiment [J]. Applied Thermal Engineering , 2020 , 168 : 114888 .
SINGH V K , SISODIA S S , PATEL A , et al . Thermoelectric cooler (TEC) based thermal control system for space applications: numerical study [J]. Applied Thermal Engineering , 2023 , 224 : 120101 .
DEAL T E . The surveyor thermal switch [C]// Proceedings of NASA Conference . Vol. 2 . Washington, DC : National Aeronautics and Space Administration , 1967 : 93 .
CATARINO I , BONFAIT G , DUBAND L . Neon gas-gap heat switch [J]. Cryogenics , 2008 , 48 ( 1/2 ): 17 - 25 .
MILANEZ F H , MANTELLI M B H . Theoretical and experimental studies of a bi-metallic heat switch for space applications [J]. International Journal of Heat and Mass Transfer , 2003 , 46 ( 24 ): 4573 - 4586 .
VAN VELSON N , TARAU C , ANDERSON W G . Two-phase thermal switch for spacecraft passive thermal management [C]// Proceedings of the 45th International Conference on Environmental Systems(ICES-2015- 51 . Bellevue, Washington, 2015 .
KARAHAN B , KOB M , EHRESMANN M , et al . In-orbit validation of a ferrofluidic thermal switch in ISS microgravity [J]. CEAS Space Journal , 2025 , 17 ( 5 ): 769 - 779 .
李腾 , 刘静 . 芯片冷却技术的最新研究进展及其评价 [J]. 制冷学报 , 2004 , 25 ( 3 ): 22 - 32 .
LI Teng , LIU Jing . Latest research advancement and assessment of chip cooling techniques [J]. Journal of Refrigeration , 2004 , 25 ( 3 ): 22 - 32 .
0
浏览量
655
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621