
浏览全部资源
扫码关注微信
上海理工大学能源与动力工程学院 上海 200093
黄理浩,男,副教授,上海理工大学能源与动力工程学院,15021119832,E-mail:huanglihao1208@163.com。研究方向:强化传热。
收稿:2024-12-20,
修回:2025-01-10,
录用:2025-03-10,
纸质出版:2026-02-16
移动端阅览
陈浩南,黄理浩,陶乐仁等.不同齿形结构水平管对冷凝换热及压降特性的影响[J].制冷学报,2026,47(01):155-163.
Chen Haonan Huang Lihao Tao Leren Zhang Qiuxia.Impact of Different Fin Profiles on Horizontal Tubes for Condensation Heat-Transfer and Pressure-Drop Characteristics[J].Journal of Refrigeration,2026,47(01):155-163.
陈浩南,黄理浩,陶乐仁等.不同齿形结构水平管对冷凝换热及压降特性的影响[J].制冷学报,2026,47(01):155-163. DOI: 10.12465/issn.0253-4339.20241220006. CSTR: XXXXX.XX.XXX.20241220006.
Chen Haonan Huang Lihao Tao Leren Zhang Qiuxia.Impact of Different Fin Profiles on Horizontal Tubes for Condensation Heat-Transfer and Pressure-Drop Characteristics[J].Journal of Refrigeration,2026,47(01):155-163. DOI: 10.12465/issn.0253-4339.20241220006. CSTR: XXXXX.XX.XXX.20241220006.
为研究不同齿形结构水平管内冷凝换热和压降特性,揭示不同齿形结构带来强化传热的机制,对外径为8 mm的换热管进行实验,旨在分析其冷凝传热系数与管内压降特性。结果表明:随着质量流速的升高,测试管的冷凝传热系数和管内压降均增加;而冷凝温度的升高则导致两者均下降。强化管传热系数比光滑管提高38.5%~115.6%,压降提高49%~173%。螺旋结构在管内引发的二次环流有效提高了换热;较大的齿高和较小的齿顶角使制冷剂在流经齿尖时产生更强烈的湍流;增加齿数提升了传热面积。对比单位压降传热系数,得出18°强化管综合性能最好,螺旋角强化传热的同时大幅增加压降,因此不能一味地提高强化结构去追求更好的换热。通过不同的传热和压降关联式与实验值进行对比,Olivier关联式减少了等效雷诺数在关联式中的权重,调节了湍流程度对结果的影响,对传热系数预测精度较好。Hirose考虑了Lockhart–Martinelli参数和两相压降乘数等,提高压降预测的准确性,平均绝对误差分别为11.4%、18.2%。
This study investigates the condensation heat transfer and pressure drop characteristics in horizontal tubes with different fin profiles and reveals their respective heat transfer enhancement mechanisms. Experiments are conducted to assess the heat-transfer coefficient and pressure-drop of condensation in heat-exchanger tubes with an outer diameter of 8 mm. The results of the study demonstrate that both the condensation heat-transfer coefficient and pressure drop exhibited within the examined tubes increase with an increase in the mass flux, whereas both decrease with an increase in the condensation temperature. The heat-transfer coefficient of the enhanced tubes increases by 38.5%-115.6% compared to that of the smooth tubes, whereas the pressure drop increases by 49%-173%. The secondary circulation formed by the spiral structure within the tube enhances heat transfer. Larger fin heights and smaller apex angles enhance the turbulence in the refrigerant fluid as it flows over the fin tips. An increased fin density increases heat transfer by expanding the heat-exchange area. A comparison of the heat-transfer coefficients per unit pressure drop shows that the enhanced tube with 18° spiral angle exhibits the best overall performance. The spiral angle enhances the heat transfer and significantly increases the pressure drop, indicating that improving heat transfer through more aggressive enhancement structures is not advisable. Finally, a comparison of the experimental values with various heat-transfer and pressure-drop correlations shows that the correlation by Olivier et al. alters the effect of turbulence on the results by reducing the weight of the equivalent Reynolds number in the correlation, resulting in a better prediction accuracy for the heat-transfer coefficient. Hirose et al. considered factors such as the Lockhart–Martinelli parameter and two-phase pressure-drop multiplier, making the predicted pressure drop more accurate. The average relative deviations of these factors are 11.4% and 18.2%, respectively.
FENG Wei , GAO Yu , LI Wei , et al . Condensation heat transfer experiments of R410A and R32 in horizontal smooth and enhanced tubes [J]. Journal of Solar Energy Engineering , 2024 , 146 ( 3 ): 031004 .
DAĞIDIR K , BILEN K . Usage of R513A as an alternative to R134a in a refrigeration system: an experimental investigation based on the Kigali amendment [J]. International Journal of Thermofluids , 2024 , 21 : 100582 .
LI Wei , WANG Jiacheng , GUO Yu , et al . R410A flow condensation inside two dimensional micro-fin tubes and three dimensional dimple tubes [J]. International Journal of Heat and Mass Transfer , 2022 , 182 : 121910 .
DIANI A , CAMPANALE M , ROSSETTO L . Experimental study on heat transfer condensation of R1234ze(E) and R134a inside a 4.0 mm OD horizontal microfin tube [J]. International Journal of Heat and Mass Transfer , 2018 , 126 : 1316 - 1325 .
吴晓敏 , 李辉 , 龚鹏 , 等 . 水平微肋管内蒸发及冷凝换热性能研究 [J]. 工程热物理学报 , 2006 , 27 ( 3 ): 460 - 462 .
WU Xiaomin , LI Hui , GONG Peng , et al . Evaporation and condensation heat transfer in horizontal micro-fin tubes [J]. Journal of Engineering Thermophysics , 2006 , 27 ( 3 ): 460 - 462 .
SCHLAGER L M , PATE M B , BERGLES A E . Evaporation and condensation heat transfer and pressure drop in horizontal, 12.7 mm microfin tubes with refrigerant 22 [J]. Journal of Heat Transfer , 1990 , 112 ( 4 ): 1041 - 1047 .
COLOMBO L P M , LUCCHINI A , MUZZIO A . Flow patterns, heat transfer and pressure drop for evaporation and condensation of R134A in microfin tubes [J]. International Journal of Refrigeration , 2012 , 35 ( 8 ): 2150 - 2165 .
曾延琦 , 吴礼 , 何强 . Φ 5 mm瘦齿大螺旋角内螺纹铜管换热性能研究 [J]. 制冷与空调(北京) , 2015 , 15 ( 7 ): 21 - 23 .
ZENG Yanqi , WU Li , HE Qiang . Study on heat transfer performance of Φ 5 mm inner-grooved copper tube with slimmer tooth and larger helical angle [J]. Refrigeration and Air-conditioning , 2015 , 15 ( 7 ): 21 - 23 .
LIN Yuansheng , LI Junye , CHEN Zengchao , et al . Two-phase flow heat transfer in micro-fin tubes [J]. Heat Transfer Engineering , 2021 , 42 ( 5 ): 369 - 386 .
LU Zhenyang , JIANG Jingde , TANG Cheng , et al . Research on the R513A condensation heat transfer characteristics in horizontal microfin tubes [J]. International Communications in Heat and Mass Transfer , 2024 , 154 : 107462 .
GNIELINSKI V . New equations for heat and mass transfer in turbulent pipe and channel flow [J]. International Chemical Engineering , 1976 , 16 ( 2 ): 8 ⁃ 16 .
PETUKHOV B S . Heat transfer and friction in turbulent pipe flow with variable physical properties [J]. Advances in Heat Transfer , 1970 , 6 : 503 - 564 .
GEBAUER T , AL-BADRI A R , GOTTERBARM A , et al . Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane [J]. International Journal of Heat and Mass Transfer , 2013 , 56 ( 1/2 ): 516 - 524 .
MOHSENI S G , AKHAVAN-BEHABADI M A . Flow pattern visualization and heat transfer characteristics of R-134a during evaporation inside a smooth tube with different tube inclinations [J]. International Communications in Heat and Mass Transfer , 2014 , 59 : 39 - 45 .
SAKAMATAPAN K , WONGWISES S . Pressure drop during condensation of R134a flowing inside a multiport minichannel [J]. International Journal of Heat and Mass Transfer , 2014 , 75 : 31 - 39 .
KEDZIERSKI M A , GONCALVES J M . Horizontal convective condensation of alternative refrigerants within a micro-fin tube [J]. Journal of Enhanced Heat Transfer , 1999 , 6 ( 2-4 ): 161 - 178 .
CAVALLINI A , DELCOL D , DORETTI L , et al . A new computational procedure for heat transfer and pressure drop during refrigerant condensation inside enhanced tubes [J]. Journal of Enhanced Heat Transfer , 1999 , 6 ( 6 ): 441 - 456 .
OLIVIER J A , LIEBENBERG L , THOME J R , et al . Heat transfer, pressure drop, and flow pattern recognition during condensation inside smooth, helical micro-fin, and herringbone tubes [J]. International Journal of Refrigeration , 2007 , 30 ( 4 ): 609 - 623 .
HIROSE M , ICHINOSE J , INOUE N . Development of the general correlation for condensation heat transfer and pressure drop inside horizontal 4 mm small-diameter smooth and microfin tubes [J]. International Journal of Refrigeration , 2018 , 90 : 238 - 248 .
GOTO M , INOUE N , ISHIWATARI N . Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes [J]. International Journal of Refrigeration , 2001 , 24 ( 7 ): 628 - 638 .
YONEMOTO R , KOYAMA S . Experimental study on condensation of pure refrigerants in horizontal micro-fin tubes [J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers , 2012 , 24 ( 2 ): 139 - 148 .
0
浏览量
85
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621