
浏览全部资源
扫码关注微信
1.河南科技大学车辆与交通工程学院 洛阳 471003
2. 豫新汽车热管理科技有限公司 新乡 453000
3. 中创新航技术研究院(江苏)有限公司 常州 213000
4. 中航锂电(洛阳)有限公司 洛阳 471000
梁坤峰,男,教授,河南科技大学车辆与交通工程学院,139492300093,E-mail:lkf@haust.edu.cn。研究方向:电动汽车热管理。
收稿:2024-12-19,
修回:2025-03-12,
录用:2025-03-12,
纸质出版:2026-02-16
移动端阅览
张晨光,梁坤峰,陈浩远等.双对象控制策略对直冷系统温控及电动汽车能量流影响特性[J].制冷学报,2026,47(01):127-137.
Zhang Chenguang,Liang Kunfeng,Chen Haoyuan,et al.Impact of Dual-Objective Control Strategy on Temperature Control in Direct-Cooling System and Energy Flow in Electric Vehicles[J].Journal of Refrigeration,2026,47(01):127-137.
张晨光,梁坤峰,陈浩远等.双对象控制策略对直冷系统温控及电动汽车能量流影响特性[J].制冷学报,2026,47(01):127-137. DOI: 10.12465/issn.0253-4339.20241219001. CSTR: XXXXX.XX.XXX.20241219001.
Zhang Chenguang,Liang Kunfeng,Chen Haoyuan,et al.Impact of Dual-Objective Control Strategy on Temperature Control in Direct-Cooling System and Energy Flow in Electric Vehicles[J].Journal of Refrigeration,2026,47(01):127-137. DOI: 10.12465/issn.0253-4339.20241219001. CSTR: XXXXX.XX.XXX.20241219001.
电动汽车热管理系统在提升车内舒适性和电池性能方面成为关键研究方向。针对乘员舱与动力电池的不同温度响应特性,提出了一种直冷系统架构,并基于环境温度、车辆运行状态及实时温度信息,设计了双对象温控策略。策略能够动态调整乘员舱与电池的温控优先级,确保整车最佳热管理效果。在实验环境舱中搭建了热管理系统台架,并开发了整车热管理系统的仿真模型。在不同行驶工况和环境温度条件下,对3种温控策略完成了性能对比。结果表明:双对象温控策略在多种环境温度条件下展现出优越的温度控制能力和能效表现,并在电池SOC恢复方面表现出最佳性能;在35 ℃的高温环境下,乘员舱和电池温度分别在51 s、547 s达标;在-7 ℃的低温环境下,乘员舱和电池温度分别在127 s与365 s内达预设值,且SOC恢复率显著提高。虽然双对象温控策略增加了能耗(相比乘员舱温控策略高出约1.2%~3.0%),但显著提升了电池温控效率和整体系统性能,具有较高的实际应用潜力。
Thermal-management systems for electric vehicles have become a key research focus for enhancing cabin thermal comfort and battery performance. This study proposes a direct-cooling system architecture to address the different temperature-response characteristics of cabins and power batteries. A dual-objective temperature-control strategy is developed based on ambient temperature, vehicle operating status, and real-time load temperature information, enabling the dynamic adjustment of thermal-control priorities between the cabin and battery to ensure optimal system performance. A thermal-management system test bench is constructed in an environmental chamber, and a simulation model of the vehicle thermal-management system is developed. Performance comparisons are conducted between the three control strategies under various driving conditions and ambient temperatures. The results demonstrate that the dual-objective strategy exhibits superior temperature-control capability and energy efficiency across different environmental conditions, along with optimal battery state-of-charge (SOC) recovery performance. Under 35 ℃ high-temperature conditions, the cabin and battery reach target temperatures within 51 s and 547 s, respectively. Under -7 ℃ low-temperature conditions, they reach preset values within 127 s and 365 s, respectively, with significantly improved SOC recovery rates. Although the dual-objective strategy slightly increases energy consumption (approximately 1.2%-3.0% higher than the cabin-priority strategy), it substantially enhances the battery thermal-control efficiency and overall system performance, demonstrating high potential for practical applications.
RAMESH BABU A , MINOVSKI B , SEBBEN S . Thermal encapsulation of large battery packs for electric vehicles operating in cold climate [J]. Applied Thermal Engineering , 2022 , 212 : 118548 .
LIU Benlong , SU Yingying , DENG Qiaoyang , et al . Reducing lithium-ion battery thermal runaway risk based on an integrated cooling strategy for electric vehicles [J]. International Journal of Heat and Mass Transfer , 2023 , 216 : 124594 .
YANG Yue , YANG Lijun , DU Xiaoze , et al . Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack [J]. Applied Thermal Engineering , 2019 , 163 : 114401 .
AN Zhiguo , GAO Weilin , ZHANG Jiyao , et al . Bionic capillary/honeycomb hybrid lithium-ion battery thermal management system for electric vehicle [J]. Applied Thermal Engineering , 2024 , 242 : 122444 .
E Shengxin , LIU Yuxian , CUI Yaxin , et al . Effects of composite cooling strategy including phase change material and cooling air on the heat dissipation performance improvement of lithium-ion power batteries pack in hot climate and its catastrophe evaluation [J]. Energy , 2023 , 283 : 129074 .
GUO Zengjia , WANG Yang , ZHAO Siyuan , et al . Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms [J]. International Journal of Heat and Mass Transfer , 2023 , 207 : 124024 .
GAO Yuan , GAO Qing , ZHANG Xuewen . Study on battery direct-cooling coupled with air conditioner novel system and control method [J]. Journal of Energy Storage , 2023 , 70 : 108032 .
CHEN Meng , LI Jingjing . Experimental study on heating performance of pure electric vehicle power battery under low temperature environment [J]. International Journal of Heat and Mass Transfer , 2021 , 172 : 121191 .
WANG Haitao , TAO Tao , XU Jun , et al . Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries [J]. Journal of Energy Storage , 2022 , 46 : 103835 .
MIN Haitao , ZHANG Zhaopu , SUN Weiyi , et al . A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime [J]. Applied Thermal Engineering , 2020 , 181 : 115944 .
ZHOU Xun , CHEN Haoyuan , LIANG Kunfeng , et al . Winter performance analysis of multi-mode integrated thermal management system based on thermodynamics [J]. Sustainable Energy Technologies and Assessments , 2022 , 53 : 102726 .
SHEN Ming , GAO Qing . System simulation on refrigerant-based battery thermal management technology for electric vehicles [J]. Energy Conversion and Management , 2020 , 203 : 112176 .
WANG Junbo , GAO Shuai , ZHU Jiahui , et al . Thermal performance analysis and burning questions of refrigerant direct cooling for electric vehicle battery [J]. Applied Thermal Engineering , 2023 , 232 : 121055 .
ZHAO Lige , ZHOU Qi , WANG Zhe . A systematic review on modelling the thermal environment of vehicle cabins [J]. Applied Thermal Engineering , 2024 , 257 : 124142 .
XIE Yi , ZHENG Jintao , HU Xiaosong , et al . An improved resistance-based thermal model for prismatic lithium-ion battery charging [J]. Applied Thermal Engineering , 2020 , 180 : 115794 .
THOMAS K E , NEWMAN J . Heats of mixing and of entropy in porous insertion electrodes [J]. Journal of Power Sources , 2003 , 119 : 844 - 849 .
HE Changxiang , YUE Qianli , WU Maochun , et al . A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries [J]. International Journal of Heat and Mass Transfer , 2021 , 181 : 121855 .
LIANG Kunfeng , ZHANG Yunpeng , WANG Wenbing , et al . Performance analysis and multi-objective optimization of refrigerant-based integrated thermal management system for electric vehicles [J]. Applied Thermal Engineering , 2024 , 244 : 122707 .
HAO Shengli , HAN Kai , WANG Yongzhen , et al . Vapor compression cycle-based integrated thermal management systems for electric vehicles: a critical review [J]. Energy Conversion and Management , 2024 , 321 : 119072 .
LU Bowen , SHI Lingfeng , SUN Xiaocun , et al . Unlocking the multi-mode energy-saving potential of a novel integrated thermal management system for range-extended electric vehicle [J]. Energy Conversion and Management , 2023 , 293 : 117486 .
0
浏览量
241
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621