引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 3059次   下载 3539 本文二维码信息
码上扫一扫!
基于小波去噪和神经网络的冷水机组故障诊断
石书彪1, 陈焕新1, 李冠男1, 胡云鹏1, 黎浩荣2, 胡文举3
0
(1.华中科技大学制冷与低温实验室;2.University of Nebraska-Lincoln;3.北京建筑大学 供热供燃气通风及空调工程北京市重点实验室)
摘要:
对基于神经网络方法的冷水机组故障监测效率取决于训练数据和被测数据的质量的问题进行了研究。采用小波变换的方法剔除测量数据中的噪声,提高数据质量,从而提高冷水机组故障诊断效率。结果表明:采用小波变换使得各个水平故障的检测效率均得到提高,尤其水平一的故障检测效率提高明显。故障水平一检测率的提高能够及时的辨别冷水机组的故障,从而采用措施防止故障进一步恶化,对降低能源消耗、提高系统的可靠性以及保证室内舒适性具有重要的意义。通过利用ASHRAE Project提供的数据对故障诊断与检测(fault detection and diagnosis)策略进行验证,检测率明显提高。
关键词:  冷水机组  故障检测与诊断  神经网络  小波分析  贝叶斯正则化
DOI:
    
基金项目:国家自然科学基金(51328602)资助项目。
Fault Diagnosis of Chillers Based on Neural Network and Wavelet Denoising
Shi Shubiao1, Chen Huanxin1, Li Guannan1, Hu Yunpeng1, Li Haorong2, Hu Wenju3
(1.Refrigeration and Cryogenics Laboratory, Huazhong University of Science and Technology;2.University of Nebraska-Lincoln;3.Beijing University of Civil Engineering and Architecture)
Abstract:
Chiller fault detection based on neural network is a data-based analysis method. The fault detection efficiency relies on the quality of the training data and the mesasured data.The wavelet transfer method which can remove the measurement nosise is used to improve the detection efficiencies of chiller.The results show that wavelet transfer make the detection efficiencies of fault level improved, especially the first level. The increase of the first level detection rate will be able to timely identify the chiller fault, and take the measures to prevent further deterioration of chiller fault, which is of important significance to reduce energy consumption and improve the reliability of the air-conditioning system and ensure the indoor thermal comfort. The FDD (fault detection and diagnosis)strategy is validated through using ASHRAE Project data, which shows that the detection rate is improved obviously.
Key words:  chiller  fault detection and diagnosis  BP neural network  wavelet denoising  bayesian regularization

用微信扫一扫

用微信扫一扫