浏览全部资源
扫码关注微信
1. 中国空气动力研究与发展中心 高速空气动力研究所
2. 陆军工程大学国防工程学院
纸质出版日期:2020,
移动端阅览
刘立瑶, 茅靳丰, 云长江, 等. 分离式热管蓄冷空调释冷性能实验研究[J]. 制冷学报, 2020,41(2).
LIU LIYAO, MAO JINFENG, YUN CHANGJIANG, et al. Experimental Investigation on the Discharge Performance of Separated Heat Pipe Air-conditioning Systems. [J]. Journal of refrigeration, 2020, 41(2).
刘立瑶, 茅靳丰, 云长江, 等. 分离式热管蓄冷空调释冷性能实验研究[J]. 制冷学报, 2020,41(2). DOI: 10.3969/j.issn.0253-4339.2020.02.100.
LIU LIYAO, MAO JINFENG, YUN CHANGJIANG, et al. Experimental Investigation on the Discharge Performance of Separated Heat Pipe Air-conditioning Systems. [J]. Journal of refrigeration, 2020, 41(2). DOI: 10.3969/j.issn.0253-4339.2020.02.100.
本文设计了基于分离式热管换热的蓄冷空调系统,针对其释冷性能进行了因素实验和响应曲面实验研究。结果表明:分离式热管蓄冷空调释冷性能稳定
实验条件下最大制冷量可达5.09 kW;制冷量随循环风量的增加而增加,而除湿量存在最佳除湿循环风量,最佳除湿循环风量约为620 m3/h,除湿量约为4.32 kg/h;制冷量随环境温湿度的升高而增加;得到了不同工况下制冷量的回归方程,分析了不同影响因子对制冷量的影响规律,在循环风量较低的工况下,热管阀门对制冷量影响较弱,随着循环风量的增加,对制冷量影响增加。
A cold storage air-conditioning system based on separated heat pipe heat exchanger was designed
and the effect of influencing factors on the discharge performance and their response surfaces were experimentally investigated. The results show that the discharging performance of the cold storage air-conditioning system with separated heat pipe was stable; the maximum refrigeration capacity could reach 5.09 kW under experimental conditions. Cooling capacity increases with an increase in the circulating air volume while there is an optimum circulating air volume for dehumidification. The optimum circulating air volume for dehumidification is about 620 m3/h and the dehumidification capacity is about 4.32 kg/h
and the cooling capacity increases with the increase in temperature and humidity of the environment. The regression equation of the cooling capacity under different working conditions was obtained
and the effect of different influence factors on the cooling capacity was analyzed. Under the conditions with low circulating air volume
the influence of the heat pipe valve on refrigeration capacity is weak; however
with an increase in circulating air volume
its influence on refrigeration capacity increases.
蓄冰储能分离式热管降温除湿响应曲面法
ice storageseparated heat pipecooling and dehumidificationresponse surface method
0
浏览量
1675
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构