浏览全部资源
扫码关注微信
1. 上海交通大学制冷与低温工程研究所
2. 上海真聂思楼宇科技有限公司
纸质出版日期:2019
移动端阅览
变风量空调系统用非线性模型预测控制方法研究[J]. 制冷学报, 2019,40(6).
Nonlinear Model Predictive Control for a Variable Air Volume Air-conditioning System[J]. Journal of refrigeration, 2019, 40(6).
变风量空调系统用非线性模型预测控制方法研究[J]. 制冷学报, 2019,40(6). DOI: 10.3969/j.issn.0253-4339.2019.06.062.
Nonlinear Model Predictive Control for a Variable Air Volume Air-conditioning System[J]. Journal of refrigeration, 2019, 40(6). DOI: 10.3969/j.issn.0253-4339.2019.06.062.
在工业HVAC系统中,为了提高在大扰量下的控制精度,模型预测控制(MPC)被广泛应用。本文提出一种用于变风量(VAV)系统的非线性MPC。该非线性MPC采用具有外部输入的非线性自回归网络(NARX)和粒子群优化算法(PSO)。 NARX模型旨在预测VAV系统的受控参数(室温),PSO作为优化器,来获得VAV系统的最优控制变量。通过为成本函数的目标分配不同的权值,本文提出的非线性MPC能权衡VAV系统的控制精度和节能需求,以达到不同的控制效果。不同权值的两种方案在实验室的VAV系统中得到了验证,其中方案1仅考虑控制精度,方案2同时考虑了控制精度和节能性。分别将实验得到的两种方案的MPC的控制效果与基于PI控制器的定静压方法进行对比,实验结果表明:基于MPC的方案1可以实现室温稳定在设定值±0.5 ℃的控制精度范围;基于MPC的方案2显示出更好的节能特性,与定静压方法对比,节能率达到23.7%。
To improve the control precision of a control system under large and frequent perturbations
the model-based predictive control (MPC) has been developed for industrial heating
ventilation
and air conditioning (HVAC) systems. Because the thermal dynamic characteristics of HVAC systems are time-variant
nonlinear
and contain uncertainties during the control process
conventional controller methods face several challenges. In this study
a nonlinear MPC for variable air volume (VAV) systems is developed and investigated. A nonlinear autoregressive network with exogenous inputs (NARX) and particle swarm optimization (PSO) are employed for the nonlinear MPC. The NARX aims to predict the controlled parameter (room temperature) of the VAV system and the PSO serves as an optimizer to obtain the optimal control variables of the VAV system. By assigning different weight values to the objectives of the cost function
the proposed nonlinear MPC can generate different control solutions considering both the control precision and energy saving of a VAV system. Two scenarios of NARX-based MPC were investigated in an experimental VAV system. Scenario 1 only considers the control accuracy while scenario 2 considers both energy saving and control precision. The experimental results show that the NARX-based MPC under scenario 1 can achieve much higher control precision (±0.5 ℃) at room temperature than that of the constant static pressure (CSP) method with a PI controller. The NARX-based MPC under scenario 2 shows a better energy-saving characteristic
saving 23.7% of energy consumption
as compared to that of the CSP method with a PI controller. This work will contribute to the development of nonlinear MPC and its applications in HVAC systems.
0
浏览量
1767
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构