浏览全部资源
扫码关注微信
1. 华中科技大学能源与动力工程学院
2. 珠海格力电器股份有限公司
纸质出版日期:2018
移动端阅览
周镇新, 李绍斌, 谭泽汉, 等. 基于PCA-Clustering的压缩机回液故障诊断[J]. 制冷学报, 2018,39(4).
Zhou Zhenxin, Li Shaobin, Tan Zehan, et al. Fault Diagnosis for Compressor Liquid Floodback based on PCA-Clustering[J]. Journal of refrigeration, 2018, 39(4).
周镇新, 李绍斌, 谭泽汉, 等. 基于PCA-Clustering的压缩机回液故障诊断[J]. 制冷学报, 2018,39(4). DOI: 10.3969/j.issn.0253-4339.2018.04.111.
Zhou Zhenxin, Li Shaobin, Tan Zehan, et al. Fault Diagnosis for Compressor Liquid Floodback based on PCA-Clustering[J]. Journal of refrigeration, 2018, 39(4). DOI: 10.3969/j.issn.0253-4339.2018.04.111.
在变制冷剂量(VRF)空调系统中,压缩机回液将导致能量损失。本文结合大数据提出了一种基于PCA-Clustering的压缩机回液故障诊断的方法。首先提取出故障相关变量,并通过数据预处理,剔除异常值与空值;然后将处理后的数据进行主成分分析(PCA),获取降维后的新主元变量数据;最后将新的主元变量进行聚类分析(Clustering analysis)得到回液故障数据分类标签。结果表明:该方法能够在数据标签未知的情况下,较好的区分不同类别的压缩机回液故障以及正常数据,使压缩机回液故障诊断率达到94.29%。
The liquid floodback in a compressor has an adverse impact on the variable refrigerant volume (VRF) air-conditioning system
which will cause energy loss. Nowadays
Big Data is being broadly utilized in fault detection and diagnostic (FDD). Thus
the PCA-Clustering method
which is combined with Big Data
was proposed to diagnose compressor liquid refrigerant floodback fault. First
data quality was improved by data preprocessing; secondly
the principal component analysis (PCA) method was employed to obtain the new dimensional variable data; finally
the new principal variables were clustered to get the classification label of liquid refrigerant floodback fault data. The results show that the model can preferably diagnose the liquid refrigerant floodback problem in the absence of real label data
with the diagnostic rate of the compressor liquid refrigerant floodback reaching 94.29%.
0
浏览量
2388
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构