
浏览全部资源
扫码关注微信
1.浙江大学宁波科创中心 宁波 315100
2.浙江大学制冷与低温研究所浙江省制冷与低温技术重点实验室 杭州 310027
3.浙江大学平衡建筑研究中心 杭州 310027
徐象国,男,教授,浙江大学制冷与低温研究所,0571-87953944,E-mail:zjuxgxu@zju.edu.cn。研究方向:空调系统模拟、动态特性以及高级控制算法开发,新能源汽车热管理技术。
收稿:2024-11-25,
修回:2025-02-14,
录用:2025-02-19,
纸质出版:2025-12-16
移动端阅览
王家锋, 徐象国. 电池直冷热管理系统的动态建模及模型预测控制研究[J]. 制冷学报, 2025,46(6):23-33.
Wang Jiafeng, Xu Xiangguo. Dynamic Modeling and Model Predictive Control Study of Direct Cooling Thermal Management System for Batteries[J]. Journal of Refrigeration, 2025, 46(6): 23-33.
王家锋, 徐象国. 电池直冷热管理系统的动态建模及模型预测控制研究[J]. 制冷学报, 2025,46(6):23-33. DOI: 10.12465/j.issn.0253-4339.2025.06.023.
Wang Jiafeng, Xu Xiangguo. Dynamic Modeling and Model Predictive Control Study of Direct Cooling Thermal Management System for Batteries[J]. Journal of Refrigeration, 2025, 46(6): 23-33. DOI: 10.12465/j.issn.0253-4339.2025.06.023.
基于制冷剂直接冷却的电池热管理系统具有多干扰、强耦合及非线性特征,传统PID控制在电池温度调节过程存在超调现象且难以兼顾节能需求。基于第一性原理建立了直冷热管理系统的动态降阶模型,并利用实验数据验证了其线性化模型。基于该模型设计了一种线性时变模型预测控制(MPC)策略,并在电池冷却和WLTC驾驶循环2种工况下与PID控制进行对比。结果表明:在电池发热量恒定条件下,对比电池温度由50 ℃降至30 ℃的稳定时间,MPC控制策略为262 s,PID控制策略为965 s,同时MPC节约2.47%的能耗。在WLTC工况中,PID控制的温度波动较大,最大偏差为2.9 ℃,而MPC能够快速响应热负荷变化,稳定控制温度在30 ℃。2种控制策略的温度变化标准差分别为1.21 ℃和0.044 ℃,MPC策略在温度调节速度、能效及鲁棒性方面均优于PID控制。
Battery thermal-management systems based on direct refrigerant cooling are characterized by multiple sources of disturbance
strong coupling
and nonlinearity
making regulation of the temperature difficult through traditional proportional-integral-derivative (PID) controllers. In this study
a dynamic step-down model of a direct cooling thermal-management system was first established based on the first principle
and its linearized model was verified using experimental data. Based on this model
a linear time-varying model-based predictive control strategy was designed and compared with PID control under two operating conditions: battery cooling and the worldwide harmonized light vehicles test cycle (WLTC). Under the condition of constant battery heat generation
the stabilization time for the battery temperature from 50 ℃ to 30 ℃ was 262 s for the model predictive control (MPC) strategy and 952 s for the PID control strategy. At the same time
the MPC reduced the energy consumption by 5.57%. Under the WLTC condition
the temperature fluctuation of the PID control was large
with a maximum deviation of 2.9 ℃
while the MPC was able to respond quickly to a heat load change and stabilize the control temperature at 30 ℃. The standard temperature deviations of the PID and MPC control strategies were 1.7 ℃ and 0.06 ℃
respectively. In summary
the MPC strategy was superior to the PID control in terms of temperature regulation speed
energy efficiency
and robustness.
KUMAR R , GOEL V . A study on thermal management system of lithium-ion batteries for electrical vehicles: a critical review [J ] . Journal of Energy Storage , 2023 , 71 : 108025 .
邹慧明 , 唐坐航 , 杨天阳 , 等 . 电动汽车热管理技术研究进展 [J ] . 制冷学报 , 2022 , 43 ( 3 ): 15 - 27 .
( ZOU Huiming , TANG Zuohang , YANG Tianyang , et al . Review of research on thermal management technology for electric vehicles [J ] . Journal of Refrigeration , 2022 , 43 ( 3 ): 15 - 27 .)
JAGUEMONT J , VAN MIERLO J . A comprehensive review of future thermal management systems for battery-electrified vehicles [J ] . Journal of Energy Storage , 2020 , 31 : 101551 .
聂磊 , 王敏弛 , 赵耀 , 等 . 纯电动汽车制冷剂 直冷电池热管理系统的实验研究 [J ] . 制冷学报 , 2020 , 41 ( 4 ): 52 - 58 .
( NIE Lei , WANG Minchi , ZHAO Yao , et al . Experimental study on direct refrigerant battery cooling system for electric vehicle [J ] . Journal of Refrigeration , 2020 , 41 ( 4 ): 52 - 58 .)
高帅 , 王俊博 , 朱佳慧 , 等 . 制冷剂相态变化对动力电池直冷系统温控性能的影响分析 [J ] . 制冷学报 , 2023 , 44 ( 3 ): 58 - 66 .
( GAO Shuai , WANG Junbo , ZHU Jiahui , et al . Influence of refrigerant phase change on temperature control performance of direct cooling system for power batteries [J ] . Journal of Refrigeration , 2023 , 44 ( 3 ): 58 - 66 .)
LIN Xiangwei , LI Yubai , WU Weitao , et al . Advances on two-phase heat transfer for lithium-ion battery thermal management [J ] . Renewable and Sustainable Energy Reviews , 2024 , 189 : 114052 .
CEN Jiwen , LI Zhibin , JIANG Fangming . Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management [J ] . Energy for Sustainable Development , 2018 , 45 : 88 - 95 .
CEN Jiwen , JIANG Fangming . Li-ion power battery temperature control by a battery thermal management and vehicle cabin air conditioning integrated system [J ] . Energy for Sustainable Development , 2020 , 57 : 141 - 148 .
GAO Yuan , GAO Qing , ZHANG Xuewen . Study on battery direct-cooling coupled with air conditioner novel system and control method [J ] . Journal of Energy Storage , 2023 , 70 : 108032 .
SHEN Ming , GAO Qing . System simulation on refrigerant-based battery thermal management technology for electric vehicles [J ] . Energy Conversion and Management , 2020 , 203 : 112176 .
XU Ning , YE Chongyang , HU Yongjun , et al . Decoupling control of an integrated direct cooling thermal management system for electric vehicles [J ] . International Journal of Refrigeration , 2024 , 160 : 165 - 174 .
ZHANG Yan , ZHAO Donggang , HE Liange , et al . Research on prediction model of electric vehicle thermal management system based on particle swarm optimization-back propagation neural network [J ] . Thermal Science and Engineering Progress , 2024 , 47 : 102281 .
XIE Yi , LIU Zhaoming , LI Kuining , et al . An improved intelligent model predictive controller for cooling system of electric vehicle [J ] . Applied Thermal Engineering , 2021 , 182 : 116084 .
CHENG Hangyu , JUNG S , KIM Y B . Battery thermal management system optimization using deep reinforced learning algorithm [J ] . Applied Thermal Engineering , 2024 , 236 : 121759 .
LIU Yuanzhi , ZHANG Jie . Self-adapting J-type air-based battery thermal management system via model predictive control [J ] . Applied Energy , 2020 , 263 : 114640 .
WANG Haidan , WANG Wenyi , SONG Yulong , et al . Data-driven model predictive control of transcritical CO 2 systems for cabin thermal management in cooling mode [J ] . Applied Thermal Engineering , 2023 , 235 : 121337 .
张腾 , 李明佳 , 李冬 , 等 . 模型预测控制在电池二次冷却系统中应用研究 [J ] . 工程热物理学报 , 2024 , 45 ( 1 ): 13 - 19 .
( ZHANG Teng , LI Mingjia , LI Dong , et al . The research of MPC in secondary cooling system of battery [J ] . Journal of Engineering Thermophysics , 2024 , 45 ( 1 ): 13 - 19 .)
PAN Chaofeng , JIA Zihao , WANG Jian , et al . Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control [J ] . Energy , 2023 , 283 : 129099 .
GUO Rong , SUN Ziyi , LUO Maohui . Energy-efficient battery thermal management strategy for range extended electric vehicles based on model predictive control and dynamic programming [J ] . Energy , 2024 , 307 : 132769 .
HONG S H , JANG D S , PARK S , et al . Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles [J ] . Applied Thermal Engineering , 2020 , 173 : 115213 .
ZHANG Wei , ZHAO Rui , CHENG Wenlong . Temperature control performance of a spaceborne PTC heating system: dynamic modeling and parametric analysis [J ] . Thermal Science and Engineering Progress , 2023 , 44 : 102062 .
KANDLIKAR S G . A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes [J ] . Journal of Heat Transfer , 1990 , 112 ( 1 ): 219 - 228 .
LONGO G A . Refrigerant R134a condensation heat transfer and pressure drop inside a small brazed plate heat exchanger [J ] . International Journal of Refrigeration , 2008 , 31 ( 5 ): 780 - 789 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621