浏览全部资源
扫码关注微信
1.上海理工大学能源与动力工程学院 上海 200093
2.开利空调冷冻研发管理(上海)有限公司 上海 200436
韩华,女,副教授,上海理工大学能源与动力工程学院,13611880360,E-mail:happier_han@126.com。研究方向:制冷空调系统的故障诊断及优化,AI在制冷系统中的应用,新型制冷方式。
收稿日期:2023-09-10,
修回日期:2023-12-27,
录用日期:2024-01-18,
纸质出版日期:2025-04-16
移动端阅览
凌敏彬, 杨钰婷, 韩华, 等. 基于关键特征的制冷剂泄漏故障软测量研究[J]. 制冷学报, 2025,46(2):145-154.
Ling Minbin, Yang Yuting, Han Hua, et al. Soft Measurement of Refrigerant Leakage Based on Key Features[J]. Journal of refrigeration, 2025, 46(2): 145-154.
凌敏彬, 杨钰婷, 韩华, 等. 基于关键特征的制冷剂泄漏故障软测量研究[J]. 制冷学报, 2025,46(2):145-154. DOI: 10.12465/j.issn.0253-4339.2025.02.145.
Ling Minbin, Yang Yuting, Han Hua, et al. Soft Measurement of Refrigerant Leakage Based on Key Features[J]. Journal of refrigeration, 2025, 46(2): 145-154. DOI: 10.12465/j.issn.0253-4339.2025.02.145.
针对制冷剂泄漏难以直接测量的问题,建立基于数据挖掘和关键特征的制冷剂泄漏故障软测量研究。通过随机森林重要性排序和距离相关系数对制冷剂泄漏故障的表征特征进行筛选,建立支持向量回归(SVR)软测量模型对泄漏进行定量测量。经一台额定制冷量为1 440 kW、充注量为330 kg螺杆式冷水机组泄漏实验验证,基于3个表征特征建立的SVR软测量模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为0.844 kg和0.734 kg,软测量性能较其它3个特征子集显著提升。
Refrigerant leakage is a frequent and costly fault that deteriorates the normal operation of a chiller; however
it is difficult to measure directly. This study proposes a data mining- and key-feature-based approach for the soft measurement of refrigerant leakage. Random forest importance ranking and distance correlation coefficients were used to select the characteristic features
and a support vector regression (SVR) soft measurement model was established to measure leakage quantitatively. The proposed model was validated through a leakage experiment conducted on a screw chiller with a rated cooling capacity of 1 440 kW and a refrigerant charge of 330 kg. The results showed that the SVR soft measurement model established on the three selected key features achieved significantly improved performance. The model had a root mean square error (RMSE) of 0.844 kg and a mean absolute error (MAE) of 0.734 kg
outperforming the other three feature subsets.
BEHFAR A , YUILL D , YU Yuebin . Supermarket system characteristics and operating faults (RP-1615) [J ] . Science and Technology for the Built Environment , 2018 , 24 ( 10 ): 1104 - 1113 .
ZHANG Yun , LIU Cichong , WANG Tianying , et al . Leakage analysis and concentration distribution of flammable refrigerant R290 in the automobile air conditioner system [J ] . International Journal of Refrigeration , 2020 , 110 : 286 - 294 .
MADANI H , ROCCATELLO E . A comprehensive study on the important faults in heat pump system during the warranty period [J ] . International Journal of Refrigeration , 2014 , 48 : 19 - 25 .
KIM W , BRAUN J E . Evaluation of the impacts of refrigerant charge on air conditioner and heat pump performance [J ] . International Journal of Refrigeration , 2012 , 35 ( 7 ): 1805 - 1814 .
钱长华 , 于林 . 空调系统中制冷剂泄漏浅析 [J ] . 暖通空调 , 2008 , 38 ( 3 ): 122 - 124 .
( QIAN Changhua , YU Lin . Refrigerant leakage of air conditioning systems [J ] . Journal of HV & AC , 2008 , 38 ( 3 ): 122 - 124 .)
CALM J M . Emissions and environmental impacts from air-conditioning and refrigeration systems [J ] . International Journal of Refrigeration , 2002 , 25 ( 3 ): 293 - 305 .
MCCULLOCH A , MIDGLEY P M , ASHFORD P . Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere [J ] . Atmospheric Environment , 2003 , 37 ( 7 ): 889 - 902 .
YAO Wanli , LI Donghui , GAO Long . Fault detection and diagnosis using tree-based ensemble learning methods and multivariate control charts for centrifugal chillers [J ] . Journal of Building Engineering , 2022 , 51 : 104243 .
HAN Hua , ZHANG Zhan , CUI Xiaoyu , et al . Ensemble learning with member optimization for fault diagnosis of a building energy system [J ] . Energy and Buildings , 2020 , 226 : 110351 .
刘杰 , 赵宇 , 祁照岗 , 等 . 制冷剂充注量对新型换热器汽车空调的影响 [J ] . 制冷学报 , 2011 , 32 ( 1 ): 12 - 15 .
( LIU Jie , ZHAO Yu , QI Zhaogang , et al . Impact of refrigerant charge on mobile air conditioning system with new heat exchanger [J ] . Journal of Refrigeration , 2011 , 32 ( 1 ): 12 - 15 .)
王海峰 , 张守兵 , 原惠惠 , 等 . 多功能空调热水器最佳制冷剂充注量的实验与分析 [J ] . 制冷学报 , 2015 , 36 ( 3 ): 87 - 91 .
( WANG Haifeng , ZHANG Shoubing , YUAN Huihui , et al . Experimental study on optimal refrigerant charge of multi-functional air-conditioning hot water heater [J ] . Journal of Refrigeration , 2015 , 36 ( 3 ): 87 - 91 .)
SUN Shaobo , LI Guannan , CHEN Huanxin , et al . A hybrid ICA-BPNN-based FDD strategy for refrigerant charge faults in variable refrigerant flow system [J ] . Applied Thermal Engineering , 2017 , 127 : 718 - 728 .
LIU Jiangyan , HU Yunpeng , CHEN Huanxin , et al . A refrigerant charge fault detection method for variable refrigerant flow (VRF) air-conditioning systems [J ] . Applied Thermal Engineering , 2016 , 107 : 284 - 293 .
于仙毅 , 巫江虹 , 高云辉 . 基于主成分分析与支持向量机的热泵系统制冷剂泄漏识别研究 [J ] . 化工学报 , 2020 , 71 ( 7 ): 3151 - 3164 .
( YU Xianyi , WU Jianghong , GAO Yunhui . Research on refrigerant leakage identification for heat pump system based on PCA-SVM models [J ] . CIESC Journal , 2020 , 71 ( 7 ): 3151 - 3164 .)
FAN Yuqiang , CUI Xiaoyu , HAN Hua , et al . Feasibility and improvement of fault detection and diagnosis based on factory-installed sensors for chillers [J ] . Applied Thermal Engineering , 2020 , 164 : 114506 .
TASSOU S A , GRACE I N . Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems [J ] . International Journal of Refrigeration , 2005 , 28 ( 5 ): 680 - 688 .
韩华 , 谷波 , 任能 . 基于主元分析与支持向量机的制冷系统故障诊断方法 [J ] . 上海交通大学学报 , 2011 , 45 ( 9 ): 1355 - 1361 .
( HAN Hua , GU Bo , REN Neng . Fault diagnosis for refrigeration systems based on principal component analysis and support vector machine [J ] . Journal of Shanghai Jiao Tong University , 2011 , 45 ( 9 ): 1355 - 1361 .)
王江宇 , 陈焕新 , 刘江岩 , 等 . 基于PCA-DT的多联机制冷剂充注量故障诊断 [J ] . 华中科技大学学报(自然科学版) , 2016 , 44 ( 7 ): 1 - 4 .
( WANG Jiangyu , CHEN Huanxin , LIU Jiangyan , et al . PCA-DT based refrigerant charge fault diagnosis for variable refrigerant flow system [J ] . Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2016 , 44 ( 7 ): 1 - 4 .)
RAI A , KIM J M . A novel pipeline leak detection approach independent of prior failure information [J ] . Measurement , 2021 , 167 : 108284 .
俞金寿 . 软测量技术及其应用 [J ] . 自动化仪表 , 2008 , 29 ( 1 ): 1 - 7 .
( YU Jinshou . Soft sensing technology and its application [J ] . Process Automation Instrumentation , 2008 , 29 ( 1 ): 1 - 7 .)
HECHT-NIELSEN R . Theory of the backpropagation neural network [M ] // Neural Networks for Perception . US : Academic Press , 1992 : 65 - 93 .
POIRIER P J , MEECH J A . Using fuzzy logic for on-line trend analysis [C ] // Proceedings of IEEE International Conference on Control and Applications . Vancouver, BC, Canada : IEEE , 1993 : 83 - 86 .
LÁZARO M , SANTAMARÍA I , PÉREZ-CRUZ F , et al . Support Vector Regression for the simultaneous learning of a multivariate function and its derivatives [J ] . Neurocomputing , 2005 , 69 ( 1-3 ): 42 - 61 .
MAKSIMOVIĆ G , JOVIĆ S , JOVANOVIĆ R , et al . Management of health care expenditure by soft computing methodology [J ] . Physica A: Statistical Mechanics and Its Applications , 2017 , 465 : 370 - 373 .
WANG Wenchuan , CHAU K W , CHENG Chuntian , et al . A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series [J ] . Journal of Hydrology , 2009 , 374 ( 3/4 ): 294 - 306 .
BREIMAN L . Random forests [J ] . Machine Learning , 2001 , 45 : 5 - 32 .
ECHEVERRY-GALVIS M A , PETERSON J K , SULO-CACERES R . The social nestwork: tree structure determines nest placement in Kenyan weaverbird colonies [J ] . PLoS ONE , 2014 , 9 ( 2 ): e88761 .
STEINWART I , CHRISTMANN A . Support vector machines [M ] . New York : Springer , 2008 .
YANG Yuting , XU Ling , HAN Hua , et al . Soft measurement and prediction of refrigerant leakage based on SVR-LSTM [J ] . International Journal of Refrigeration , 2023 , 152 : 303 - 314 .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构