浏览全部资源
扫码关注微信
1.同济大学机械与能源工程学院 上海 201804
2.上海建筑设计研究院有限公司 上海 200041
3.同济大学工程结构性能演化与控制教育部重点实验室 上海 200092
叶蔚,男,副教授,博士生导师,同济大学机械与能源工程学院,13611821985,E-mail:weiye@tongji.edu.cn。研究方向:精密恒温环境营造等。
收稿日期:2023-08-22,
修回日期:2023-11-07,
录用日期:2023-11-14,
纸质出版日期:2024-12-16
移动端阅览
郭炜辰, 王增, 朱学锦, 等. 板式换热器和混水泵用于超高精密级恒温空调水系统的适用性对比研究[J]. 制冷学报, 2024,45(6):57-62.
Guo Weichen, Wang Zeng, Zhu Xuejin, et al. Comparative Study on Applicability of Plate Heat Exchanger and Mixed Water Pump in Constant-Temperature Water Chiller Controlled at Ultra-High Precision[J]. Journal of refrigeration, 2024, 45(6): 57-62.
郭炜辰, 王增, 朱学锦, 等. 板式换热器和混水泵用于超高精密级恒温空调水系统的适用性对比研究[J]. 制冷学报, 2024,45(6):57-62. DOI: 10.12465/j.issn.0253-4339.2024.06.057.
Guo Weichen, Wang Zeng, Zhu Xuejin, et al. Comparative Study on Applicability of Plate Heat Exchanger and Mixed Water Pump in Constant-Temperature Water Chiller Controlled at Ultra-High Precision[J]. Journal of refrigeration, 2024, 45(6): 57-62. DOI: 10.12465/j.issn.0253-4339.2024.06.057.
某大科学装置恒温空调冷冻水系统需配备超高精密级(即温度波动≤±0.1 ℃)且抗干扰能力强的冷冻水系统。传统电加热调节无法解决冷冻水温度高频振荡的问题。通过缩尺实验,验证了板式换热器和混水泵两种方案用于提供超高精密级冷冻水的可行性;建立了基于两种方案的Modelica仿真模型并进行实验验证;基于Modelica模型仿真,量化并对比了两种方案下冷冻水温度控制的稳态和动态性能。结果表明:两种方案均可在一定硬件水平下实现±0.1 ℃内温度波动控制,板换方案稳态性能较优,两种方案下全时段内的RMSE(均方根误差)均低于0.1 ℃;板式换热器和混水方案的调节时间分别为5 000 s和600 s,混水泵方案动态性能较优;板式换热器和混水方案均可对冷冻水供水温度高频振荡进行“主动削峰”,削峰系数分别为0.07和0.4。
A large-scale scientific facility uses constant-temperature air conditioning (CTAC) to control the air temperature fluctuation at an ultrahigh precision
i.e.
≤±0.1 ℃
which implies that the temperature of the chiller water must also be maintained at an ultrahigh precision level. Traditional CTACs depend on electric heating to maintain the chilled water temperature. However
such methods usually fail to address the issue of high-frequency oscillations and typically are not applied to ultrahigh-precision control. In this study
by conducting a reduced-scale experiment
we first validated the feasibility of two water chillers
one using a plate heat exchanger and another using a mixed water pump
to provide chilled water at an ultrahigh precision. Simulations using Modelica models based on these two approaches were established and experimentally verified. Finally
the steady-state and dynamic performances of these two systems were compared. Both approaches can achieve ±0.1 ℃ temperature fluctuation control when the hardware meets specific criteria
with the plate heat exchanger approach exhibiting superior steady-state performance. Under both schemes the root mean square error (RMSE) for the entire time period is below 0.1 ℃. The settling times for the plate heat exchanger and mixed water pump approaches are 5 000 s and 600 s
respectively. The mixed water pump approach exhibits better dynamic performance. Both plate heat exchanger and mixed water pump approaches are capable of actively dampening high-frequency oscillations in the water supply temperature
with damping coefficients of 0.07 and 0.4
respectively.
WANG Guanfang , LI Zhu , HUANG Jialing , et al . Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection [J]. Chinese Optics Letters , 2022 , 20 ( 1 ): 011203 .
ZHU Boer , LI Sikun , MAO Yanjie , et al . Fast thermal aberration model for lithographic projection lenses [J]. Opt Express , 2019 , 27 ( 23 ): 34038 - 34049 .
郦峻 . 高精度恒温空调设计体会 [J]. 发电与空调 , 2014 , 35 ( 3 ): 49 - 53 . (
LI Jun . Discussion on air conditioning design of high precision constant temperature air conditioning system [J]. Power Generation & Air Condition , 2014 , 35 ( 3 ): 49 - 53 .)
恒温恒湿实验室工程技术规程: T/CECS 644—2019 [S]. 北京 : 中国建筑工业出版社 , 2019 . (
Technical specification for constant temperature and humidity laboratory engineering: T/CECS 644—2019 [S]. Beijing : China Architecture and Construction Press , 2019 .)
曹国庆 , 汪洪军 , 袁艺荣 , 等 . T/CECS 644—2019《恒温恒湿实验室工程技术规程》解读 [J]. 暖通空调 , 2022 , 52 ( 7 ): 26 - 30 . (
CAO Guoqing , WANG Hongjun , YUAN Yirong , et al . Interpretation of T/CECS 644—2019 Technical specification for constant temperature and humidity laboratory engineering [J]. Journal of HV&AC , 2022 , 52 ( 7 ): 26 - 30 .)
MIN Haitao , ZHANG Zhaopu , SUN Weiyi , et al . A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime [J]. Applied Thermal Engineering , 2020 , 181 : 115944 .
DI FRANCESCO M , VELDENZ L , DELL′ANNO G , et al . Heater power control for multi-material, variable speed automated fibre placement [J ]. Composites Part A: Applied Science and Manufacturing , 2017 , 101 : 408 - 421 .
XU Chengcheng , LI Shuhong , ZHANG Xiaosong . Energy flexibility for heating and cooling in traditional Chinese dwellings based on adaptive thermal comfort: a case study in Nanjing [J]. Building and Environment , 2020 , 179 : 106952 .
周俊阳 . 恒温恒湿空调系统的节能设计与冷冻水温度优化 [D]. 杭州 : 浙江大学 , 2012 . (
ZHOU Junyang . Energy-saving design of constant temperature and humidity air-conditioning system and optimization of chilled water temperature [D]. Hangzhou : Zhejiang University , 2012 .)
LAWTON K M , PATTERSON S R . A high-stability air temperature control system [J]. Precision Engineering , 2000 , 24 ( 2 ): 174 - 182 .
LAWTON K M , PATTERSON S R , KEANINI R G . Precision temperature control of high-throughput fluid flows: theoretical and experimental analysis [J]. Journal of Heat Transfer , 2001 , 123 ( 4 ): 796 - 802 .
DONG He , ZHANG Wei , LI Minxuan , et al . High-precision air temperature control considering both hardware elements and controller design [J]. Case Studies in Thermal Engineering , 2022 , 37 : 102290 .
ALAWADHI E M . Temperature regulator unit for fluid flow in a channel using phase change material [J]. Applied Thermal Engineering , 2005 , 25 ( 2/3 ): 435 - 449 .
AL-DAWERY S K , ALRAHAWI A M , AL-ZOBAI K M . Dynamic modeling and control of plate heat exchanger [J]. International Journal of Heat and Mass Transfer , 2012 , 55 ( 23/24 ): 6873 - 6880 .
李堃 . 基于板式换热器不同材料及厚度的保温外壳的优化研究 [D]. 郑州 : 华北水利水电大学 , 2022 . (
LI Kun . Study on optimization of insulation shell with different materials and thickness based on plate heat exchanger [D]. Zhengzhou : North China University of Water Resources and Electric Power , 2022 .)
赵晴 . 基于传递函数模型的供热系统板式换热器动态特性研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2022 . (
ZHAO Qing . Research on dynamic characteristics of plate heat exchanger in heating system based on transfer function model [D]. Harbin : Harbin Industrial University , 2022 .)
董俐言 , 王宝龙 , 石文星 , 等 . 板式蒸发式冷凝器传热传质的数值模拟 [J]. 制冷学报 , 2013 , 34 ( 1 ): 10 - 17 . (
DONG Liyan , WANG Baolong , SHI Wenxing , et al . Numerical simulation of heat and mass transfer in plate evaporative condenser [J]. Journal of Refrigeration , 2013 , 34 ( 1 ): 10 - 17 .)
刘千诚 , 王瑞 , 王保卫 , 等 . 全自动混水降温换热机组 [C]// 2022供热工程建设与高效运行研讨会 . 无锡 : 中国市政工程华北设计研究总院有限公司. 2022 : 3 . (
LIU Qiancheng , WANG Rui , WANG Baowei , et al . Automatic mix water cooling heat exchange unit [C]// 2022 Heating Engineering Construction and Efficient Conference . Wuxi : North China Municipal Engineering Design & Research Institute Co., Ltd. , 2022 : 3 .)
潘壮 . 混水连接方式热力站的设计 [J]. 暖通空调 , 2023 , 53 ( 增刊1 ): 16 - 19 . (
PAN Zhuang . Design of heat station with mixed water connection [J]. Journal of HV&AC , 2023 , 53 ( Suppl.1 ): 16 - 19 .)
CAO Di , HUANG Xiaonan , ZENG Zhibo , et al . Modeling and experimental analysis of high-efficiency fluid temperature fluctuation attenuator based on phase regulator [J]. International Journal of Heat and Mass Transfer , 2023 , 217 : 124622 .
MATTSSON S E , ELMQVIST H , OTTER M . Physical system modeling with Modelica [J]. Control Engineering Practice , 1998 , 6 ( 4 ): 501 - 510 .
0
浏览量
238
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构