
浏览全部资源
扫码关注微信
1.上海理工大学生物系统热科学研究所 上海 200093
2. 上海市生物资源低温保存技术服务平台 上海 200093
3. 上海市肿瘤能量治疗技术与器械协同创新中心 上海 200093
4. 原启生物科技(上海)有限责任公司 上海 200120
胥义,男,教授,上海理工大学生物系统热科学研究所, 13917434302,E-mail:xuyi@usst.edu.cn。研究方向:低温生物医学技术。
收稿:2024-11-27,
修回:2024-12-22,
录用:2025-01-22,
网络出版:2025-09-29,
移动端阅览
胡健,党航宇,占太杰等.细胞微液滴可控快速降温及复温的冻存系统研究[J].制冷学报,
Hu Jian,Dang Hangyu,Zhan Taijie,et al.Research on the Cryopreservation System of Controlled Rapid Cooling and Rewarming of Cellular Micro-droplets[J].Journal of Refrigeration,
胡健,党航宇,占太杰等.细胞微液滴可控快速降温及复温的冻存系统研究[J].制冷学报, DOI:10.12465/issn.0253-4339.20241127001. CSTR: XXXXX.XX.XXX.20241127001.
Hu Jian,Dang Hangyu,Zhan Taijie,et al.Research on the Cryopreservation System of Controlled Rapid Cooling and Rewarming of Cellular Micro-droplets[J].Journal of Refrigeration, DOI:10.12465/issn.0253-4339.20241127001. CSTR: XXXXX.XX.XXX.20241127001.
细胞微液滴的玻璃化保存方法在低温保存领域受到广泛关注,但微液滴玻璃化过程还存在降温/复温过程不可控等局限性。采用移动滑台升降,结合焦耳热复温方法搭建用于细胞微液滴玻璃化过程可控快速降温及复温的冻存系统,该系统通过调节浸入液氮的速度实现快速、可控降温,并通过控制焦耳热的加热时间、电流大小实现高速率复温过程,实现微液滴的玻璃化过程并显著避免了液滴复温过程的反玻璃化对细胞的损伤。结果表明:该系统可控制降温速率可以达到1.8×10
4
℃/min,能够实现细胞微液滴较低浓度保护剂下的玻璃化保存;复温速率控制可以达到4.0×10
4
℃/min,能有效避免较低浓度保护剂复温过程反玻璃化及冰晶再生长的发生;通过微液滴A549细胞低温保存效果,证实了该系统冷冻复苏后的存活率显著高于传统麦管保存。该研究工作有望为细胞微液滴自动玻璃化保存及复温方法提供新的解决方案。
The vitrification preservation methods for cell microdroplets have received considerable attention in the field of cryopreservation. However, the vitrification process for microdroplets has limitations such as uncontrollable cooling/rewarming processes. In this study, a cryopreservation system for controllable rapid cooling and rewarming during the vitrification of cell microdroplets was constructed by combining the lifting of a moving slide table with the Joule heating rewarming method. This system achieves rapid and controllable cooling by adjusting the speed of immersion in liquid nitrogen and realizes a high-rate rewarming process by controlling the heating time and current intensity of Joule heating. Thus, it realizes the vitrification of microdroplets and significantly prevents damage to cells caused by devitrification during the droplet rewarming process. The results show that the cooling rate controlled by this system attained 1.8 × 10⁴ ℃/min. This enabled the vitrification preservation of cell microdroplets with a relatively low concentration of cryoprotectant. The rewarming rate control attained 4.0 × 10⁴ ℃/min. This effectively prevented the occurrence of devitrification and ice crystal regrowth during the rewarming process of the relatively low concentration of cryoprotectant. Cryopreservation of A549 cells in microdroplets verified that the survival rate after cryopreservation and resuscitation using this system is significantly higher than that after conventional straw preservation. The research presented in this paper is likely to provide new solutions for the automatic vitrification preservation and rewarming of cell microdroplets.
MENEGHEL J , KILBRIDE P , JOHN MORRIS G . Cryopreservation as a key element in the successful delivery of cell-based therapies-a review [J]. Frontiers in Medicine , 2020 , 7 : 592242 .
TAYLOR M J , WEEGMAN B P , BAICU S C , et al . New approaches to cryopreservation of cells, tissues, and organs [J]. Transfusion Medicine and Hemotherapy , 2019 , 46 ( 3 ): 197 - 215 .
WENG L , BEAUCHESNE P R . Dimethyl sulfoxide-free cryopreservation for cell therapy: a review [J]. Cryobiology , 2020 , 94 : 9 - 17 .
AMINI M , BENSON J D . Technologies for vitrification based cryopreservation [J]. Bioengineering , 2023 , 10 ( 5 ): 508 .
AONO A , NAGATOMO H , TAKUMA T , et al . Dynamics of intracellular phospholipid membrane organization during oocyte maturation and successful vitrification of immature oocytes retrieved by ovum pick-up in cattle [J]. Theriogenology , 2013 , 79 ( 8 ): 1146 - 1152.e1 .
XU Yi , WANG Ting , DENG Xiao , et al . Analysis on the Leidenfrost effect of cryoprotectant microdroplets on the liquid nitrogen surface [J]. Scientia Sinica Technologica , 2017 , 47 ( 2 ): 190 - 196 .
SHARMA Y , SHARMA M . Biophysics of cryopreservation [J]. International Journal of Thermodynamics , 2022 , 25 ( 1 ): 17 - 27 .
VAJTA G , HOLM P , KUWAYAMA M , et al . Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos [J]. Molecular Reproduction and Development , 1998 , 51 ( 1 ): 53 - 58 .
KUWAYAMA M . Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method [J]. Theriogenology , 2007 , 67 ( 1 ): 73 - 80 .
LANE M , SCHOOLCRAFT W B , GARDNER D K , et al . Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique [J]. Fertility and Sterility , 1999 , 72 ( 6 ): 1073 - 1078 .
LIMA G L , LUZ V B , LUNARDI F O , et al . Effect of cryoprotectant type and concentration on the vitrification of collared peccary (Pecari tajacu) ovarian tissue [J]. Animal Reproduction Science , 2019 , 205 : 126 - 133 .
朱文欣 , 潘平安 , 黄永华 , 等 . 基于固体表面冷冻激光复温法的液滴冻融实验研究 [J]. 生物医学工程学杂志 , 2023 , 40 ( 5 ): 973 - 981 .
ZHU Wenxin , PAN Ping'an , HUANG Yonghua , et al . Droplet freeze-thawing system based on solid surface vitrification and laser rewarming [J]. Journal of Biomedical Engineering , 2023 , 40 ( 5 ): 973 - 981 .
LANDA V , TEPLÁ O . Cryopreservation of mouse 8-cell embryos in microdrops [J]. Folia Biologica , 1990 , 36 ( 3/4 ): 153 - 158 .
DEMIRCI U , MONTESANO G . Cell encapsulating droplet vitrification [J]. Lab on a Chip , 2007 , 7 ( 11 ): 1428 - 1433 .
ZHANG X , KHIMJI I , SHAO L , et al . Nanoliter droplet vitrification for oocyte cryopreservation [J]. Nanomedicine , 2012 , 7 ( 4 ): 553 - 564 .
CUI Mengdong , ZHAN Taijie , YANG Jiamin , et al . Droplet generation, vitrification, and warming for cell cryopreservation: a review [J]. ACS Biomaterials Science & Engineering , 2023 , 9 ( 3 ): 1151 - 1163 .
XU Yi , GUO Ning , YANG Guoliang , et al . Cryobiology for biobanking [J]. Scientia Sinica Vitae , 2023 , 53 ( 7 ): 1021 - 1034 .
韩恒鑫 , 胥义 , 刘宝林 . 复杂组织器官低温保存研究进展 [J]. 真空科学与技术学报 , 2022 , 42 ( 1 ): 1 - 13 .
HAN Hengxin , XU Yi , LIU Baolin . Advances in cryopreservation of tissues and organs [J]. Chinese Journal of Vacuum Science and Technology , 2022 , 42 ( 1 ): 1 - 13 .
SEKI S , MAZUR P . The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure [J]. Cryobiology , 2009 , 59 ( 1 ): 75 - 82 .
PAN Jiaji , ZENG Qijin , PENG Ke , et al . Review of rewarming methods for cryopreservation . Biopreservation and Biobanking . 2024 , 22 ( 4 ): 304 - 308 .
KLEINHANS F W , SEKI S , MAZUR P . Simple, inexpensive attainment and measurement of very high cooling and warming rates [J]. Cryobiology , 2010 , 61 ( 2 ): 231 - 233 .
GUO Z , ZUCHOWICZ N , BOUWMEESTER J , et al . Conduction-dominated cryomesh for organism vitrification [J]. Advanced Science , 2024 , 11 ( 3 ): 2303317 .
ZHAN Li , HAN Zonghu , SHAO Qi , et al . Rapid joule heating improves vitrification based cryopreservation [J]. Nature Communications , 2022 , 13 ( 1 ): 6017 .
HAN Hengxin , ZHAN Taijie , CUI Mengdong , et al . Investigation of rapid rewarming chips for cryopreservation by joule heating [J]. Langmuir , 2023 , 39 ( 31 ): 11048 - 11062 .
PROFESSOR X X . Joule heating in electrokinetic flow [J]. Electrophoresis , 2008 , 29 ( 1 ): 33 - 43 .
HAN Z , BISHOP J C . Perspective: critical cooling and warming rates as a function of CPA concentration [J]. Cryo Letters , 2020 , 41 ( 4 ): 185 - 193 .
MAZUR P , SEKI S . Survival of mouse oocytes after being cooled in a vitrification solution to -196 ℃ at 95° to 70 000 ℃/min and warmed at 610° to 118 000 ℃/min: a new paradigm for cryopreservation by vitrification [J]. Cryobiology , 2011 , 62 ( 1 ): 1 - 7 .
SEKI S , MAZUR P . Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice [J]. Biology of Reproduction , 2008 , 79 ( 4 ): 727 - 737 .
ARAV A , NATAN Y , KALO D , et al . A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos [J]. Journal of Assisted Reproduction and Genetics , 2018 , 35 ( 7 ): 1161 - 1168 .
SEKI S , KAWABE T , YAMAZAKI W , et al . Cryopreservation of rat embryos at all developmental stages by small-volume vitrification procedure and rapid warming in cryotubes [J]. Scientific Reports , 2023 , 13 ( 1 ): 20903 .
ZHU Yan , ZHANG Quanjun , FENG H L , et al . Automation in vitrification and thawing of mouse oocytes and embryos [J]. Frontiers in Cell and Developmental Biology , 2023 , 11 : 1330684 .
BEREJNOV V , HUSSEINI N S , ALSALED O A , ET AL . Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions . Journal of Applied Crystallography , 2006 , 39 ( 2 ): 244 - 251 .
WARKENTIN M , STANISLAVSKAIA V , HAMMES K , et al . Cryocrystallography in capillaries: critical glycerol concentrations and cooling rates [J]. Journal of Applied Crystallography , 2008 , 41 ( 4 ): 791 - 797 .
HOPKINS J B , BADEAU R , WARKENTIN M , et al . Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions [J]. Cryobiology , 2012 , 65 ( 3 ): 169 - 178 .
0
浏览量
220
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621