浏览全部资源
扫码关注微信
1.青岛大学机电工程学院,山东省青岛市266071
2.海信冰箱有限公司,山东省青岛市266071
[ "王德昌,男,教授,青岛大学机电工程学院,0532 - 85952229, 。研究方向:换热器性能,吸收式制冷系统,热泵与储能。" ]
收稿日期:2024-09-20,
修回日期:2024-12-03,
录用日期:2024-12-06
移动端阅览
钱蒲驰, 王德昌, 宋庆路, 等. 微通道分液冷凝器小流量下的换热性能与压降实验研究[J/OL]. 默认刊物名称, 2025.
QIAN PUCHI, WANG DECHANG, SONG QINGLU, et al. Experimental Study on Heat Transfer Performance and Pressure Drop of Microchannel Liquid Separation Condenser. [J/OL]. Moren journal, 2025.
制冷剂质量流量1g/s以下的低质量流量下分液孔的大小和位置对分液冷凝器的性能有重要影响。对R600a在5种不同微通道分液冷凝器内的换热性能和压降进行了实验研究,对不同制冷剂质量流量、入口空气温度和速度、冷凝压力下5种分液冷凝器的换热性能和压降特性进行分析。根据实验结果,第二隔板开孔分液冷凝器换热性能优于第三隔板开孔分液冷凝器。制冷剂质量流量越大,分液冷凝器制冷剂侧压降减小越明显。制冷剂质量流量为0.6 g/s时,第二隔板开孔分液冷凝器制冷剂侧压降较未分液冷凝器降低21.28%;为0.4 g/s时,第二隔板开孔分液冷凝器制冷剂侧压降较未分液冷凝器降低17.29%。利用综合评价因子
P
EF
比较了不同开孔直径分液冷凝器的性能,分液孔径1.2 mm的分液冷凝器平均
P
EF
值为1.58,在所有分液冷凝器中最高,综合性能最好。
The size and location of theseparating holes at low mass flow rates below 1 g/s have a significant impacton the performance of the liquid separation condenser. The heat transferperformance and pressure drop of R600a in five different microchannel liquidseparation condensers were experimentally studied
and the heat
transferperformance and pressure drop characteristics of five liquid separationcondensers under different refrigerant mass flow
inlet air temperature andvelocity
and condensing pressure were analyzed. According to the experimental results
the heat exchangeperformance of the second partition open-hole separating condenser is higherthan that of the third separator open-hole separating condenser. As the mass flow rate of therefrigerant increases
the refrigerant side pressure drop of the liquidseparation condenser decreases more significantly. When the refrigerant massflow rate is 0.6 g/s
the refrigerant side pressure drop of the secondseparator liquid separation condenser is 21.28% lower than that of the parallelflow condenser
and when the refrigerant mass flow rate is 0.4 g/s
the refrigerantside pressure drop of the second separator liquid separation condenser is17.29% lower than that of the parallel flow condenser. The performance of the liquidseparation condenser with different open-hole diameters was compared by usingthe comprehensive evaluation factor
P
EF
the average
P
EF
value of the liquid separation condenser with a separating hole size of 1.2 mm is 1.58
which is the highest among all liquid separation condensers and has the bestcomprehensive performance.
分液冷凝器分液孔径分液隔板位置换热性能压降
liquid separation condenserseparating hole sizeposition of the separatorheat transfer performancepressure drop
彭晓峰, 吴迪, 张扬. 高性能冷凝器技术原理与实践. 化工进展[J]. 2007, (01): 97-104.
PENG Xiaofeng, WU Di, ZHANG Yang. Applications and principle of high performance condensers. Chemical Industry and Engineering Progress[J]. 2007, (01): 97-104.
LI Jian, LIU Qiang, DUAN Yuanyuan, et al. Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation[J]. Applied Energy, 2017, 190: 376-389.
CHEN Jianyong, YANG Nuo, Li Junjie, et al. Evaluations of heat pump water heater with liquid-separation condensation from perspectives of performance enhancement and heat exchange area reduction[J]. International Journal of Refrigeration, 2024, 161: 21-30.
LI Jun, HRNJAK P. Separation in condensers as a way to improve efficiency[J]. International Journal of Refrigeration, 2017, 79: 1-9.
LI Jun, HRNJAK P. Visualization and quantification of separation of liquid-vapor two-phase flow in a vertical header at low inlet quality[J]. International Journal of Refrigeration, 2018, 85: 144-156.
LI Wanyong, TU Jian, LIU Yusheng, et al. Design and experimental validation of a new condenser of an automotive air conditioning unit to address non-uniform air velocity distributions[J]. International Journal of Refrigeration, 2021, 131: 834-846.
刘策, 贾力, 张旋. R134a在风冷分液式冷凝换热器中的换热性能研究[J]. 工程热物理学报, 2019, 40(07): 1620-1626.
LIU Ce, JIA Li, ZHANG Xuan. Study on Heat Transfer Performance of R134a in Air-Cooling Liquid-Vapor Separation Condenser[J]. Journal of Engineering Thermophysics, 2019, 40(07): 1620-1626.
孙鼎皓, 贾力, 党超. 风冷式翅片管分液冷凝器的实验研究[J]. 工程热物理学报, 2023, 44(09): 2572-2577.
SUN Dinghao, JIA Li, DANG Chao. Experimental Study on Air-cooled Finned-tube Condenser with Liquid-vapor Separators[J]. Journal of Engineering Thermophysics, 2023, 44(09): 2572-2577.
LIU Ce, JIA Li, ZHANG Xuan, et al. Analysis of the heat transfer characteristics of the liquid-vapor separation condenser based on a condensate growth model in horizontal tube[J]. Applied Thermal Engineering, 2019, 163: 114307.
CHEN Ying, HUA Nan, DENG Lisheng. Performances of a split-type air conditioner employing a condenser with liquid–vapor separation baffles[J]. International journal of refrigeration, 2012, 35(2): 278-289.
CHEN Xueqing, CHEN Ying, DENG Lisheng, et al. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system[J]. Applied Thermal Engineering, 2013, 51(1-2): 48-54.
ZHONG Tianming, CHEN Ying, HUA Nan, et al. In-tube performance evaluation of an air-cooled condenser with liquid–vapor separator[J]. Applied energy, 2014, 136: 968-978.
ZHONG Tianming, CHEN Ying, ZHENG Wenxiong, et al. Experimental investigation on microchannel condensers with and without liquid–vapor separation headers[J]. Applied thermal engineering, 2014, 73(2): 1510-1518.
ZHONG Tianming, DING Lixing, CHEN Shu, et al. Effect of a double-row liquid–vapor separation condenser on an air-conditioning unit performance[J]. Applied Thermal Engineering, 2018, 142: 476-482.
ZHONG Tianming, YANG Junrong, DING Lixing, et al. Heat transfer enhancement of actively-adjusting liquid–vapor in a double-row microchannel condenser[J]. Case Studies in Thermal Engineering, 2023, 47: 103110.
HUANG Kunteng, LI Junjie, CHEN Jianyong, et al. Explorations of multi‐pass‐orifice header in the liquid‐separation condenser by using CFD simulation[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123482.
黄锟腾, 陈健勇, 陈颖, 等. 联箱-小孔型气液分离器的CFD数值模拟[J]. 制冷学报, 2022, 43(01): 158-166.
HUANG Kunteng, CHEN Jianyong, CHEN Ying, et al. Simulation of Vapor-liquid Separation in Header-baffle with Hole using Computational Fluid Dynamics [J]. Journal of Refrigeration, 2022, 43(01): 158-166.
HUANG Kunteng, CHEN Jianyong, CHEN Ying, et al. Simulation of vapor-liquid separation in the orifice-baffle header under various operating conditions [J]. Applied Sciences-Basel, 2022, 12(16): 7971.
CAO Xue, WANG Xiaohe, SONG Qinglu, et al. Experimental investigation on the heat transfer and pressure drop characteristics of R600a in a minichannel condenser with different inclined angles[J]. Applied Thermal Engineering, 2021, 196: 117227.
王栋, 陶银双, 鲁月红, 等. 超临界CO2在螺旋槽管式换热器中的冷却换热[J]. 低温与超导, 2024, 52(01): 58-64.
WANG Dong, TAO Yinshuang, LU Yuehong, et al. Cooling and Heat Transfer of Supercritical CO2 in Spiral Groove Tube Heat Exchanger [J]. Low Temperature and Superconductivity, 2024, 52(01): 58-64.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构