浏览全部资源
扫码关注微信
1.热流科学与工程教育部重点实验室,能源与动力工程学院,西安交通大学,陕西省西安市710049
2.青岛求是工业技术研究院,山东省青岛市266427
[ "冀文涛,男,教授,西安交通大学能源与动力工程学院,029-82665445, 。研究方向:制冷工质沸腾与凝结相变换热,高效换热器设计,热泵干燥等." ]
收稿日期:2024-11-05,
修回日期:2024-12-04,
录用日期:2024-12-06
移动端阅览
刘杙, 杜毅, 万红牛, 等. 电池热管理散热器流动换热特性实验与数值仿真研究[J/OL]. 默认刊物名称, 2025.
LIU YI, DU YI, WAN HONG-NIU, et al. Experimental Investigation on the Flow and Heat Transfer Characteristics of a Fin and Tube Heat Exchanger Used in Battery Thermal Management. [J/OL]. Moren journal, 2025.
基于空气直接冷却的电池热管理,因其成本低、结构简单等优点被广泛应用。然而,随着风速地提高,噪音和功耗也会增加。为此本文针对一典型平直翅片电池热管理用管翅式散热器,采用实验和数值模拟方法研究了在风速为2.1~6.1m/s,(冷却工质入口与空气进口温差)为20~40℃,冷却工质质量流量为0.35kg/s~0.55kg/s时的流动换热特性。研究结果表明,这三个参数对平直翅片散热器的换热性能都有显著影响。随着风速的增加,空气侧换热系数最大提高了102.1%;随着∆
T
w-a
的增加,换热系数提高了19.1%~28.9%,并与∆
T
w-a
变化接近线性关系;冷却工质质量流量增加增强了换热,换热系数随之增加,且换热系数在相同流量增幅下增加的程度接近。为了更深入地研究散热器内部的流动状态,根据相同实验条件进行了数值模拟。研究了不同管径、管束列间距等参数变化对换热器换热性能的影响,分析了不同参数对散热器流动换热的影响,获得了相同结构和材料相对较优的换热器几何参数。
The direct air-cooling battery thermal management system
it has been widely used due to its advantages such as low cost and simple structure. However
as the air velocity increases
noise and power consumption also increase. Therefore
for a typical flat fin and tube heat exchanger for thermal management of batteries
its flow and heat transfer characteristics were investigated using experimental and numerical methods. By changing the air velocity of 2.1~6.1m/s
(temperature difference between coolant inlet and air inlet) of 20~40℃
and the coolant mass flow rate of 0.35kg/s~0.55kg/s
the heat transfer performance of the heat exchanger is determined. The results demons
trate that these three parameters have a significant effect on the heat transfer performance of the flat fin and tube heat exchanger. With the increase of air velocity
the heat transfer coefficient increased by a maximum of 102.1%; with the increase of
<math id="M3"><mrow><mstyle mathvariant="normal" mathsize="normal"><mi>Δ</mi></mstyle><mi mathvariant="italic">T</mi><mstyle mathvariant="normal" mathsize="normal"><mi>w</mi></mstyle><mstyle mathvariant="normal" mathsize="normal"><mo>−</mo></mstyle><mstyle mathvariant="normal" mathsize="normal"><mi>a</mi></mstyle></mrow></math>
the heat transfer coefficient increased by 19.1% to 28.9%
and close to a linear relationship with
<math id="M4"><mrow><mstyle mathvariant="normal" mathsize="normal"><mi>Δ</mi></mstyle><mi mathvariant="italic">T</mi><mstyle mathvariant="normal" mathsize="normal"><mi>w</mi></mstyle><mstyle mathvariant="normal" mathsize="normal"><mo>−</mo></mstyle><mstyle mathvariant="normal" mathsize="normal"><mi>a</mi></mstyle></mrow></math>
; the increase in mass flow rate of cooling water increases the heat transfer
and the heat transfer coefficient increases to a similar extent with the same flow rate increase. In order to study the flow inside the heat exchanger in depth
numerical simulations were also carried out according to the same experimental conditions. The effects of different pipe diameters and bundle column spacing on the heat exchanger performance were also investigated. The influence of different parameters on the flow and heat transfer of the heat exchanger was analyzed
and the relatively optimal heat exchanger geometrical parameters design with same structure and material were also obtained.
换热特性平直翅片散热器电池热管理空冷
Heat transfer characteristicsflat fin heat exchangerbattery thermal management systemair-cooling
彭苏萍. 中国氢能源与燃料电池发展战略及未来展望 [J]. 中国工业和信息化, 2023.
Peng Suping. China's Hydrogen Energy and Fuel Cell Development Strategy and Future Prospects[J]. China Industry and Information Technology, 2023
DONG F, LIU Y. Policy evolution and effect evaluation of new-energy vehicle industry in China [J]. Resources Policy, 2020, 67
YANG X, HU X, CHEN Z, et al. Effect of ambient dissipation condition on thermal behavior of a lithium-ion battery using a 3D multi-partition model [J]. Applied Thermal Engineering, 2020, 178.
WESTBROOK M H. Development and Future of Battery, Hybrid and Fuel-Cell Cars [M]. 2001
LIU H, WEI Z, HE W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review [J]. Energy Conversion and Management, 2017, 150: 304-30.
ZHAO G, WANG X, NEGNEVITSKY M, et al. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles [J]. Journal of Power Sources, 2021, 501.
WANG T, TSENG K J, ZHAO J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model [J]. Applied Thermal Engineering, 2015, 90: 521-9.
SANTAROSA D, PINTO D, SILVA V, et al. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions [J]. International Journal of Hydrogen Energy, 2007, 32(17): 4350-7.
MOHAMMADIAN S K, ZHANG Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles [J]. Journal of Power Sources, 2015, 273: 431-9.
HE F, LI X, MA L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells [J]. International Journal of Heat and Mass Transfer, 2014, 72: 622-9.
SAW L H, YE Y, TAY A A O, et al. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling [J]. Applied Energy, 2016, 177: 783-92.
SIRIKASEMSUK S, WIRIYASART S, NAPHON P. Experimental investigation of the thermal management system of a battery pack using a thermoelectric air‐cooling module [J]. Heat Transfer, 2022, 51(7): 6384-402.
JISHNU A K, GARG A, SHAOSEN S, et al. A novel procedure combining computational fluid dynamics and evolutionary approach to minimize parasitic power loss in air cooling of Li‐ion battery for thermal management system design [J]. Energy Storage, 2020, 3(1).
刘雨龙,付森,柴田武志. 某燃料电池车散热器冷却风扇的控制策略优化 [J]. 天津科技, 2022.
Liu Yulong, Fu Sen, TAKESHI SHIBATA. Control Strategy Optimization for Radiator Cooling Fan of a Fuel Cell Vehicle[J]. Tianjin Science & Technology, 2022.
王婷.燃料电池汽车整车散热系统仿真模拟和实验研究[D].武汉:华中科技大学,2019.
Wang Ting. Simulation and experimental study on the whole vehicle cooling system of fuel cell vehicle [D]. Wuhan: Huazhong University of Science & Technology, 2019.
傅秦生. 热工基础与应用[M].2版. 北京:机械工业出版社, 2007.
Fu Qinsheng. Fundamentals and applications of thermal engineering[M]. 2nd ed. Beijing: China Machine Press, 2007.
陶文铨. 传热学[M].5版. 北京:高等教育出版社, 2019.
Tao Wenquan, Heat transfer[M]. 5th ed. Beijing: Higer Education Press, 2019.
YONG S S Z S Y. Study of steam parameters on the performance of a TVC-MED desalination plant [J]. Desalination and Water Treatment, 2011.
GNIELINSKI V. On heat transfer in tubes [J]. International Journal of Heat and Mass Transfer, 2013, 63: 134-40.
倪育才. 实用测量不确定度评定 [M]. 北京:中国质检出版社, 2016.
Ni Yucai. Practical measurement uncertainty evaluation[M]. Beijing: Standards Press of China, 2016.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构