
浏览全部资源
扫码关注微信
1.河南科技大学车辆与交通工程学院,河南省洛阳市471003
2.豫新汽车热管理科技有限公司,河南省新乡市453000
3.中创新航技术研究院(江苏)有限公司,江苏省常州市213000
4.中航锂电(洛阳)有限公司,河南省洛阳市471000
[ "梁坤峰,男,教授,河南科技大学车辆与交通工程学院,139492300093, 。研究方向:电动汽车热管理。" ]
收稿:2024-12-19,
修回:2025-03-12,
录用:2025-03-12,
移动端阅览
张晨光, 梁坤峰, 陈浩远, 等. 双对像控制策略对直冷系统温控及电动汽车能量流影响特性[J/OL]. 默认刊物名称, 2025.
ZHANG Chenguang, LIANG Kunfeng, CHEN Haoyuan, et al. Impact Characteristics of Dual-Objective Control Strategy on Temperature Control in Direct-Cooling System and Energy Flow in Electric Vehicles[J/OL]. Moren Journal, 2025.
电动汽车热管理系统在提升车内舒适性和电池性能方面成为关键研究方向。针对乘员舱与动力电池的不同温度响应特性,提出了一种直冷系统架构,并基于环境温度、车辆运行状态及实时温度信息,设计了双对像温控策略。策略能够动态调整乘员舱与电池的温控优先级,确保整车最佳热管理效果。在实验环境舱中搭建了热管理系统台架,并开发了整车热管理系统的仿真模型。在不同行驶工况和环境温度条件下,对三种温控策略完成了性能对比。结果表明:双对像温控策略在多种环境温度条件下展现出优越的温度控制能力和能效表现,并在电池SOC恢复方面表现出最佳性能;在35℃的高温环境下,乘员舱和电池温度分别在51s、547s达标;在-7℃的低温环境下,乘员舱和电池温度分别在127与365s内达预设值,且SOC恢复率显著提高。此外,尽管双对像温控策略增加了能耗(相比乘员舱温控策略高出约1.2%-3.0%),但显著提升了电池温控效率和整体系统性能,具有较高的实际应用潜力。
The thermal management system of electric vehicles has become a key research focus for enhancing cabin comfort and battery performance. To address the different temperature response characteristics of cabin and power battery
this study proposes a direct cooling system architecture. A dual-objective temperature control strategy was developed based on environmental temperature
vehicle operating status
and real-time temperature information
enabling dynamic adjustment of thermal control priorities between the cabin and battery to ensure optimal system performance. A thermal management system test bench was constructed in an environmental chamber
and a simulation model of the vehicle thermal management system was developed. Performance comparisons were conducted among three control strategies under various driving conditions and environmental temperatures. Results demonstrate that the dual-objective strategy exhibits superior temperature control capability and energy efficiency across different environmental conditions
along with optimal battery state-of-charge (SOC) recovery performance. Under 35°C high-temperature conditions
the cabin and battery achieved target temperatures within 51s and 547s respectively
while under -7°C low-temperature conditions
they reached preset values within 127s and 365s with significantly improved SOC recovery rate. Although the dual-objective strategy slightly increases energy consumption (approximately 1.2%-3.0% higher than cabin-priority strategy)
it substantially enhances battery thermal control efficiency and overall system performance
demonstrating high potential for practical applications.
BABU A R , MINOVSKI B , SEBBEN S . Thermal encapsulation of large battery packs for electric vehicles operating in cold climate [J ] . Applied Thermal Engineering , 2022 , 212 : 118548
LIU Benlong , SU Yingying , DENG Qiaoyang , et al . Reducing lithium-ion battery thermal runaway risk based on an integrated cooling strategy for electric vehicles [J ] . International Journal of Heat and Mass Transfer , 2023 , 216 : 124594 .
YANG Yue , YANG Lijun , DU Xiaoze , et al . Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack [J ] . Applied Thermal Engineering , 2019 , 163 : 114401 .
AN Zhiguo , GAO Weilin , ZHANG Jiyao , et al . Bionic capillary/honeycomb hybrid lithium-ion battery thermal management system for electric vehicle [J ] . Applied Thermal Engineering , 2024 , 242 : 122444 .
E Shengxin , LIU Yuxian , CUI Yaxin , WU Aojin , et al . Effects of composite cooling strategy includin g phase change material and cooling air on the heat dissipation performanc e improvement of lithium-ion power batteries pack in hot climate and it s catastrophe evaluation [J ] . Energy , 2023 , 283 : 129074 .
GUO Zengjia , WANG Yang , ZHAO Siyuan , et al . Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms [J ] . International Journal of Heat and Mass Transfer , 2023 , 207 : 124024 .
GAO Yuan , GAO Qing , ZHANG Xuewen . Study on battery direct-cooling coupled with air conditioner novel system and control method [J ] . Journal of Energy Storage , 2023 , 70 : 108032 .
CHEN Meng , LI Jingjing . Experimental study on heating performance of pure electric vehicle power battery under low temperature environment [J ] . International Journal of Heat and Mass Transfer , 2021 , 172 : 121191 .
WANG Haitao , TAO Tao , XU Jun , et al . Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries [J ] . Journal of energy storage , 2022 , 46 : 103835 .
MIN Haitao , ZHANG Zhaopu , SUN Weiyi , et al . A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime [J ] . Applied Thermal Engineering , 2020 , 181 : 115944 .
ZHOU Xun , CHEN Haoyuan , LIANG Kunfeng , et al . Winter performance analysis of multi-mode integrated thermal management system based on thermodynamics [J ] . Sustainable Energy Technologies and Assessments , 2022 , 53 : 102726 .
SHEN Ming , GAO Qing . System simulation on refrigerant-based battery thermal management technology for electric vehicles [J ] . Energy Conversion and Management , 2020 , 203 : 112176 .
WANG Junbo , GAO Shuai , ZHU Jiahui , et al . Thermal performance analysis and burning questions of refrigerant direct cooling for electric vehicle battery [J ] . Applied Thermal Engineering , 2023 , 232 : 121055 .
ZHAO Lige , ZHOU Qi , WANG Zhe . A systematic review on modelling the thermal environment of vehicle cabins [J ] . Applied Thermal Engineering , 2024 : 124142 .
XIE Yi , ZHENG Jintao , HU Xiaosong , et al . An improved resistance-based thermal model for prismatic lithium-ion battery charging [J ] . Applied Thermal Engineering , 2020 , 180 : 115794 .
THOMAS K E , NEWMAN J . Heats of mixing and of entropy in porous insertion electrodes [J ] . Journal of power sources , 2003 , 119 : 844 - 849 .
HE Changxiang , YUE Qianli , WU Maochun , et al . A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries [J ] . International Journal of Heat and Mass Transfer , 2021 , 181 : 121855 .
LMS Imagine . Lab AMEsim User's guide .
HAO Shengli , HAN Kai , WANG Yongzhen , et al . Vapor compression cycle-based integrated thermal management systems for electric vehicles: A critical review [J ] . Energy Conversion and Management , 2024 , 321 : 119072 .
LU Bowen , SHI Lingfeng , SUN Xiaocun , et al . Unlocking the multi-mode energy-saving potential of a novel integrated thermal management system for range-extended electric vehicle [J ] . Energy Conversion and Management , 2023 , 293 : 117486 .
0
浏览量
93
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621