Cite this article
  •    [Click To Copy]
  •    [Click To Copy]
【Print This Page】 【Download PDF Full Text】 View/Add CommentDownload reader Close

←Previous Article|Next Article→

Back Issue    Advanced Search

This Article Has Been:Browse 577 Times   Download 664 Times QR code information in this article
Scan Up The Code!
喷砂凹坑复合微纳换热管管外蒸发换热实验研究
吴俊杰1, 张江辉1, 高宇1, 程洪1, 李小利2, 何燕1
0
(1.青岛科技大学机电工程学院;2.山东恒辉节能技术集团有限公司)
摘要:
本文实验研究了R32在外径为19.05mm的不锈钢喷砂管、凹坑管、凹坑/喷砂管以及光滑管管外环形区域蒸发换热特性,分析了质量流速(50~140 kg/(m2?s))、干度(0.2~0.8)、饱和温度(279~288 K)对制冷剂换热的影响。结果表明:凹坑/喷砂管表面传热系数最高、凹坑管次之、光滑管最低;表面传热系数和摩擦压降与质量流速成正相关,与饱和温度成负相关;高质量流速下平均干度对表面传热系数有较大影响。引入强化因子ηEF和性能评价因子ηPEF对强化换热效果进行量化,凹坑/喷砂管结合了喷砂与凹坑表面的优点展现出最佳的蒸发换热性能,其ηEF值和ηPEF值最高可达2.84和2.31。喷砂与凹坑复合处理换热管表面,增加传热面积和汽化核心数量,提高湍流强度,拉伸减薄液膜促进管外蒸发换热。
关键词:  蒸发换热  复合微纳换热管  表面传热系数  摩擦压降  环形区域
DOI:
Received:June 13, 2022Revised:September 03, 2022
基金项目:国家自然科学基金(52176077)资助项目;江西省自然科学基金(20202BAB204022)资助项目;江西省科技厅重点研发计划(20192BBEL50032)资助项目。
Evaporation Heat Transfer Outside of Sandblasted Dimple Composite Micro-nano Heat Transfer Tubes
Wu Junjie1, Zhang Jianghui1, Gao Yu1, Cheng Hong1, Li Xiaoli2, He Yan1
(1.College of Mechanical and Electrical Engineering, Qingdao University of Science and Technology;2.Shandong Henghui Energy Conservation Group Co., Ltd.)
Abstract:
The evaporation heat transfer characteristics of R32 in an annular area outside a stainless steel sandblasted tube, dimple tube, dimple/sandblasted tube, and smooth tube with an outer diameter of 19.05 mm were investigated, and the effects of the mass flux [50–140 kg/(m2?s)], vapor quality (0.2–0.8), and saturation temperature (279–288 K) on the heat transfer coefficient were analyzed. The results show that the surface heat transfer coefficient is highest for the dimple/sandblasted tube, followed by the dimple tube, and lowest for the smooth tube. The surface heat transfer coefficient and frictional pressure drop are positively correlated with the mass flux and negatively correlated with the saturation temperature. The average vapor quality at high mass flux has a significant effect on the surface heat transfer coefficient. The enhanced heat transfer effect was quantified by introducing the enhancement factor ηEF and the performance evaluation factor ηPEF. The dimple/sandblasted tube combined the advantages of sandblasted and dimple surfaces, thus exhibiting the best evaporation heat transfer performance with the highest ηEF and ηPEF values of 2.84 and 2.31, respectively. The composite treatment of sandblasted and dimple heat transfer tube surfaces increases the heat transfer area and the number of vaporization cores, improving the turbulence intensity, such that the liquid film is stretched and thinned to promote evaporation outside the tube.
Key words:  evaporation heat transfer  composite micro-nano heat transfer tube  surface heat transfer coefficient  frictional pressure drop  annular area

用微信扫一扫

用微信扫一扫