Cite this article
  •    [Click To Copy]
  •    [Click To Copy]
【Print This Page】 【Download PDF Full Text】 View/Add CommentDownload reader Close

←Previous Article|Next Article→

Back Issue    Advanced Search

This Article Has Been:Browse 1026 Times   Download 863 Times QR code information in this article
Scan Up The Code!
风速对不同流程数CO2蒸发器性能的影响
0
(1.上海海洋大学食品学院 上海冷链装备性能与节能评价专业技术服务平台;2.上海水产品加工及贮藏工程技术研究中心;3.食品科学与工程国家级实验教学示范中心(上海海洋大学);4.浙江英诺绿能科技有限公司)
摘要:
为了研究迎面风速对不同流程数CO2翅片管蒸发器性能的影响,本文建立分布参数模型对蒸发温度为-25 ℃,风速为0.5~4 m/s条件下5种流程数CO2翅片管蒸发器的制冷剂压降、换热量、温度分布及传热系数的变化进行分析,并通过实验验证了蒸发器模型的可靠性。蒸发器模型的换热量、制冷剂压降和风侧压降等参数模拟值与相同工况下实验值的误差均在±4%以内。结果表明:同一流程数蒸发器的换热量、制冷剂压降及传热系数均随风速的增大而增大,而其涨幅随风速增大而减小,综合考虑换热效果和能耗可得最佳风速范围为2.5~3.5 m/s;在一定风速条件下,蒸发器设计时在合理范围内选择较多流程数能有效提升蒸发器换热性能和增强换热均匀性,本次实验中24流程蒸发器为最佳设计方案。
关键词:  蒸发器  流程布置  风速  天然制冷剂
DOI:
Received:April 12, 2021Revised:September 26, 2021
基金项目:国家“十三五”重点研发项目课题(2019YFD0901604),海市科委科技创新行动计划(19DZ1207503)和上海市科委公共服务平台建设项目(20DZ2292200)资助。
Effect of Air Velocity on the Performance of CO2 Evaporator with Different Flow Numbers
Ye Mengying1, Gu Zhong1, Xie Jing2,3,4, Chen Xusheng5
(1.Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, College of Food Science and Technology, Shanghai Ocean University;2.Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation,College of Food Science and Technology, Shanghai Ocean University;3.Shanghai Engineering Research Center of Aquatic Product Processing & Preservation;4.National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University);5.Zhejiang Inno Thermal Technologies Co. LTD)
Abstract:
In order to study the relationship between air velocity and heat transfer performance of CO2 finned-tube evaporator, a distributed parameter model was established in this paper. The changes of refrigerant pressure drop, heat transfer, temperature distribution and heat transfer coefficient of five kinds of flow-number were analyzed under conditions of evaporation temperature of -25 ℃ and air velocity of 0.5~4 m/s, and the reliability of the model was experimentally verified. Compared with the experimental values under the same working conditions, the relative error of the simulation model for predicting the heat transfer, refrigerant pressure drop and air side pressure drop was less than ±4%. Simulations demonstrated the heat transfer, refrigerant pressure drop and heat transfer coefficient of the evaporator with the same flow number all increase with the increase of air velocity, while the increase range decreases with the increase of air velocity. The optimal air velocity range is 2.5~3.5 m/s, reflecting the heat transfer effect and energy consumption. Choosing more flow numbers in a reasonable range can effectively improve the heat transfer performance and enhance the heat transfer uniformity in evaporator design. In this experiment, the 24 flow number evaporator is the best design scheme.
Key words:  evaporator  air velocity  process layout  natural refrigerant

用微信扫一扫

用微信扫一扫