文章编号: 0253-4339(2011)06-0014-06 **DOI编码:** 10.3969/j.issn. 0253-4339. 2011. 06. 014

CO₂流动沸腾换热干涸研究进展

张 良 柳建华 葛琪林 杨建超 安守超

(上海理工大学 能源与动力工程学院 上海 200093)

摘 要 针对CO₂在亚临界管内流动沸腾换热过程中所表现出来的干涸现象研究进展进行了综述,描述了在CO₂沸腾换热过 程中的干涸现象及其产生的影响因素,分析了热流密度、质量流量、饱和温度、管径等因素对干涸产生的影响及机理。提 出CO₂流动沸腾换热过程中临界热流密度,流态变化,干涸干度的预测以及抑制干涸提前发生的相应措施是今后研究的方向。

关键词 工程热物理;流动沸腾; CO₂热物性; 换热特性; 干涸 中图分类号: TK121; TB61⁺2 **文献标识码**: A

Review on Dryout of CO₂ During Flow Boiling Heat Transfer

Zhang Liu Jianhua Ge Qilin Yang Jianchao An Shouchao

(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China)

Abstract In this paper, recent study on dryout of CO_2 during flow boiling heat transfer process is described including the effect of heat flux, mass flow, saturation temperature and diameter of tube, as well as the generation mechanism of dryout phenomenon. Study of critical heat flux, transform of flow type, prediction of dryout vapor quality and measures to suppress dryout occur will become the focus in the future.

Keywords Engineering thermophysics; Flow boiling; Thermophysical properties of CO₂; Heat transfer characteristics; Dryout

由于合成制冷剂对臭氧层破坏或大气变暖具 有重要影响,寻找一种环保高效的制冷剂一直是制 冷领域研究的重要课题之一,全球制冷行业的普遍 观点是采用自然工质。CO₂因其无毒、不易燃、对 环境友好、极好的热物性等特点,使其在众多天然 替代制冷剂中受到额外的关注,对CO2在制冷领域 的推广应用又一次成为全球范围内研究的热点^[1]。 随着对CO。实际应用系统的增加,近年来对其在流 动沸腾过程中的换热特性研究也受到广泛关注。实 验研究表明CO。在亚临界区的沸腾换热系数高于传 统制冷剂,这些研究结果均表明在相同工况CO,的 沸腾换热系数远远大于目前常用的HCFC、HFC工 质。同种实验条件下, CO,沸腾换热系数甚至高出 其他制冷剂两倍之多[2-4],对此现象研究人员归结 为由于CO。的热物性使其在沸腾换热过程中具有更 好的换热特性^[5]。然而近年来的一些研究发现CO, 沸腾换热过程中在较低干度区域会产生明显干涸现 象,随着干涸的产生其传热系数急剧下降,在相同 的温压条件下,换热系数甚至会低于目前常用制冷 剂,严重影响蒸发器的整体换热性能,而传统制冷 剂沸腾换热过程中干涸现象则不明显⁶⁰。这里针对 公开发表文献中对管内流动沸腾干涸现象的影响因 素进行分析,总结了国内外当前的研究进展。

1 管内流动沸腾干涸现象

通常CO₂在流动沸腾换热过程中随着干度增加 存在着壁面温度迅速升高,传热突然恶化的现象, 由于CO₂液膜部分干涸而导致换热系数在较低干 度时迅速降低即干涸现象^[8]。CO₂较小的液气密度 比、液气黏度比、表面张力以及高导热性使其在沸 腾换热过程中以核态沸腾为主导,随着蒸发的进行 管内流态由低干度区域的间歇流转变为中高干度区 域的不均匀环状流或雾状流^[9-11],CO₂与传统的制 冷剂相比较低的表面张力,使其在特定的热流密度 时具有更多的气泡核心,这加速了液膜中气泡的生 成从而形成部分干涸表面^[12-14]。同时在中高干度区 环状流时,随着流动沸腾过程中气泡破裂导致液滴 夹带增多则加剧了干涸现象的产生^[15],如公式(1) 中所示,Stevanovic和Studovic^[16]提出液滴夹带与液 膜厚度成比例,根据VPCarey^[17]等人的研究CO₂液

收稿日期: 2011年4月1日

膜厚度在环状流模型中接近R22的两倍。

$$w_{\rm e} = 1.1 \times 10^4 \times \delta^{2.25} \times \rho_l \tag{1}$$

其中: w_{e} 一液滴夹带量; δ 一管内液膜厚度; ρ_{l} 一液体密度。

另外,如公式(2)(3)中所示CO₂在沸腾换热过 程中较低的气相速度使其具有较高的核态沸腾抑制 干度*x*_{sup},这也是造成CO₂比传统制冷剂更易发生干 涸的重要原因^[18]。

$$x_{\sup} = \frac{\gamma}{1+\gamma} \tag{2}$$

$$\gamma = \left(\frac{\rho_{\rm g}}{\rho_{\rm l}}\right)^{0.56} \left(\frac{\mu_{\rm l}}{\mu_{\rm g}}\right)^{0.11} \left(\frac{qk_{\rm l}h_{\rm lv}\rho_{\rm g}}{98\,\sigma T_{\rm sat}h_{\rm le}^{\rm 2}}\right)^{1.11}$$
(3)

其中: ρ —密度; μ —流速;k—导热系数; T_{sat} —饱和温度;下标l—液体;下标g—气体;q— 热流密度; h_{le} —液体对流换热系数; h_{lv} —气化潜 热。

CO₂管内流动沸腾的换热机理主要包括对流沸腾、核态沸腾或两者共同作用^[19],针对上述干涸现象的成因,这些不同换热机理和流动状态决定了各种参数对干涸产生的影响程度。近来的研究表明,影响管内流动沸腾换热过程中干涸的主要因素包括:热流密度、质量流量、饱和温度和管径。除以上参数以外,CO₂的热物理性质如表面张力、黏度、液气密度比等也对干涸现象有显著影响^[20]。

2 管内流动沸腾干涸影响因素分析

2.1 热流密度

在干涸现象产生之前的大部分换热区域,与 R22,R134a相同CO₂的换热系数随着热流密度的增 加而增加,在低干度区热流密度对其换热系数影响 很大,尤其是在高热密度的情况下,蒸发初始阶段时热流密度对核态沸腾起着主导作用;在高干度区由于核态沸腾受到抑制,此时热流密度对换热系数影响降低^[2,21]。如图1所示JWu^[22]等人研究表明由于热流密度越高蒸发越剧烈,相同质量流量时,热流密度增加导致干涸现象提前出现,随着干涸现象的出现CO₂的换热性能出现不确定性,而对传统工质在相同工况对比研究中却没有明显类似现象^[6]。

Y zhao^[23]等研究人员发现在不同的工况时,同 样CO₂的换热系数在所有干度区域内随着热流密度 的增加而增加,但在整个换热过程中换热系数均 随着干度的增加而降低,且没有发现明显的干涸现 象,针对此种现象Rin Yun^[24:25]等人提出了CO₂在沸 腾换热过程中的临界热流密度(CHF)与临界蒸汽干 度的概念,在Pettersen^[26]、Cheng^[27]等人研究基础 上进行进一步研究并拟合了干涸前基于热流密度的 换热系数预测模型,公式(4)所示,其预测误差与 实验数据相比在36.4%以内。

$$h = 16.26q^{0.72} p_{\rm r}^{0.88} \tag{4}$$

其中: pr-蒸发压力。

Chaobin Dang^[28]等人对内微尺管的细管径内流 动沸腾换热干涸抑制进行研究表明,采用内部微翅 使换热管在相同热流密度工况下CO₂的沸腾换热系 数大幅提高,而且其干涸出现干度也得到推迟,如 图2所示。

由于CO₂的特殊热物理性质导致其在获得高换 热系数的同时产生了明显的干涸现象,热流密度增 加能够提高其换热系数但同时也降低了干涸产生的 干度,这严重影响了提高其高效换热区域与整体换 热系数,研究人员的最新研究正致力于热流密度的 变化建立相关理论模型进行预测其干涸的产生^[29]。

2.2 质量流量

Hewitt和Govan^[30]提出的临界液膜流率决定了 沸腾换热过程中的液滴夹带量,而研究表明CO₂的 临界液膜流率远远小于传统制冷剂,式(5)中m代 表临界液膜流率,随着m的减小蒸发过程中出现干 涸的可能相应增加。

$$m = \mu_{l} \times \exp\left(5.8504 + 0.4249 \times \frac{\mu_{g}}{\mu_{l}} \sqrt{\frac{\rho_{l}}{\rho_{g}}}\right) \quad (5)$$

因此质量流量对干涸的产生起着关键作用, 而且对于CO₂干涸现象随质量流量而变化的趋势在 不同热流密度下表现出截然不同的效果。在沸腾换 热低干度区质量流量变化对换热系数影响很小, Schael &Kind^[31], Pettersen^[32]和Hihara & Tanaka^[33] 在大量实验中发现质量流量的变化对于换热系数并 没有明显影响^[4]。但在沸腾换热中高干度区由于质 量流量增加强化了管内对流沸腾换热,使得在中高 干度区的换热系数得到明显强化^[3], 然而随着质量 流量增加却导致干涸现象出现在较低干度区域,如 图3所示。

Fig. 3 Effect of mass flow on flow boiling heat transfer of $CO_2(1)$

对于上述现象相当多的研究实验都有相同趋势,对此现象研究人员解释为较高的质量流量造成CO₂液滴夹带增加,液滴对液膜的冲击加剧导致干涸提前出现^[34],研究人员据此提出了设计低质量流量CO₂制冷蒸发器理念,希望能够在不降低换热系数的前提下使蒸发器内部分液更加均匀^[5]。 但其它研究中也发现与之相反的结果,如Maxime Ducoulombier^[35]等人的实验结果发现随着质量流量 的增加,换热过程中的干涸发生干度反而增加,如 图4所示,对此现象的解释既有认为CO₂在较低蒸 发温度所导致,也有认为是热流密度较小的原因所 导致,目前研究人员也仅对各自的实验现象进行了 分析,还没有系统研究结论。

Fig. 4 Effect of mass flow on flow boiling heat transfer of CO_2 (2)

质量流量不仅对干涸出现前的换热系数及干 涸出现的干度有影响,在干涸出现之后随着质量 流量的变化其换热特性也表现出不同趋势,当质 量流量小于临界值时干涸发生之后换热系数基本 维持不变,而当质量流量大于临界值时干涸现象 之后随着干度增加换热系数相应增加^[24],同样现象 Groeneveld^[36]等人在对水-蒸汽的实验研究中也有发 现,当管径较小、质量流量较大、流体表面张力较 小时该现象更加明显。因此,现有研究结论可以确 认CO₂质量流量的变化对于换热过程中的干涸现象 有极大影响,不仅改变了干涸出现的干度,而且与 干涸出现前后的换热系数也密切相关。

Fig.5 Effect of saturation temperature on flow boiling heat transfer of $CO_2(1)$

众多实验表明:饱和温度对CO₂沸腾换热系数 具有很大影响,随着饱和温度的上升,干涸发生之 前CO₂沸腾换热系数在所有干度区域均相应增加, 干涸发生干度随饱和温度升高而降低,这与研究人 员的预期基本一致,如图5所示。Hoo-Kyu Oh等人 研究结果还显示干涸发生后在较高饱和温度情况下 换热系数下降更为剧烈^[5,14]。

对此解释为:由于传热过程中核态沸腾占主导,换热表面的气泡分离对换热影响起了重要作用,随着饱和温度增加CO₂液气密度比相应减小,液膜中气泡浮力得到增加,使其在换热表面更容易分离,增加了流动换热中核态沸腾区域的面积,因此换热系数得到提高^[4,37,38]。但是,在特殊工况下研究人员也得出了完全相反的结论:大质量流量低热流密度时,CO₂微通道内换热系数随着饱和温度的增加而降低^[36],如图6所示。

图6 CO₂沸腾换热系数随饱和温度变化(2) Fig.6 Effect of saturation temperature on flow boiling heat transfer of CO₂ (2)

研究人员对此归结为: 在较低的温度时蒸汽 密度降低导致管内气相流速增加,同时CO₂液体的 导热系数增加使换热系数有所提高。因此,饱和温 度对于CO₂在换热过程中对干涸的影响不容忽视, 饱和温度不仅影响了干涸现象出现的干度,甚至在 饱和温度较低的工况下不出现干涸现象^[39],而且对 干涸过后的换热系数影响也很大,Xiumin Zhao^[40] 等人的研究显示-30℃时的换热系数在干涸前随干 度增加变化趋势与0℃时相反。从目前公开的研究 成果分析,饱和温度对CO₂在换热过程中干涸的影 响要比其对于换热系数的影响更为复杂,产生影响 的机理也有待进一步探讨。

2.4 换热管径

由于CO₂特殊的热物理性质使其与目前常用的 制冷工相比随着换热管径的减小沸腾换热系数能够 得到更大幅度的提高^[41],Yamamoto^[42]等人的研究 表明当换热管径从1mm减小至0.5mm时管径对于换 热系数的影响与热流密度相当,同时换热过程中的 流态,压降也随之改变,在不同管径中其干涸现象

也较其它制冷剂明显。Kandlikar^[43]参考了大量的 微通道两相流的研究成果对换热管径进行了划分, 根据此管径划分CO,沸腾换热干涸现象尚并没有显 示出规律性的趋势, John R Thome^[44]对不同管型内 换热系数的计算进行了研究,但并没有涉及对干涸 的影响。Hoo-Kyu Oh^[5]在对4.5mm管径内CO₂流动 沸腾换热研究过程中发现了明显的干涸现象, CY Park^[45]对3mm的管径实验研究表明核态沸腾的影响 受到削弱,但是CO,沸腾换热效率比传统的制冷剂 还是要高,随着干度变化换热系数没有出现明显干 涸现象,对此研究人员解释为:工质流动速度增加 使换热过程中具有较高的流动沸腾换热系数,而且 温度较低时表面张力与液体黏度较高,流体不易分 层且液膜不易受到破坏避免了干涸现象的出现。 在小管径较高蒸发温度时(管径小于3mm.蒸发温度 5~20℃)时,CO₂流动沸腾换热过程中均表现出明 显的干涸现象,但管径对于干涸的影响作用并没有 获得一致的结论, Yun^[6], Jong-Taek Oha^[46]等人对 于不同小管径内的沸腾换热性能进行了对比,实验 结果发现相同工况下在1.54mm的管径内则没有出 现明显的干涸现象,而管径减小至1.14mm时干涸 现象很明显。在Mamoru Ozawa^[47]等人在对1mm与 0.51mm管径的对比实验研究结果中却发现相反现 象,随着管径变小干涸现象发生的干度变化并不 大,而且干涸发生干度呈增加趋势。

除上述影响因素外,研究人员也对CO₂沸腾换 热过程中的流态变化,压降变化,壁面过热度等进 行了相应的研究,主要有Mamoru Ozawa^[47],John R Thome^[44],Lixin Cheng^[48]等人^[27]对CO₂在整个换 热过程中的流型图进行了研究,并分析了干涸时发 生的各种流型以及压降,但此类研究均是针对各自 实验条件下的分析,对流态与压降变化与干涸现象 之间的联系尚没有做具体分析。

3 结论

综合以上研究成果可以发现CO2管内流动沸腾 换热过程中干涸的发生是一个普遍的现象,对整个 换热过程的平均换热系数有着不可忽略的影响。这 里对目前的研究进行了综述得到如下结论:

 1) 热流密度对于干涸产生的影响目前仅仅获 得了趋势性结论,对于临界热流密度(CHF)前后对 CO₂管内流动沸腾换热干涸现象的影响没有研究。
 研究表明质量流量在作为换热系数影响因素考虑时 其影响远小于热流密度,但对沸腾换热过程中干涸 产生的干度及干涸发生后换热系数却有重要影响。 2)目前研究人员提出的CO₂管内流动沸腾换热 系数的实验关联式比较多,且针对干涸前后均分别 有相应的换热系数计算关联式,但针对干涸现象产 生的预测模型及全过程换热系数精确预测关联式还 没有。

3)现有研究表明换热管径对干涸有着重要影响,尤其在微通道沸腾换热过程中干涸现象的出现 对换热系数的影响远远大于常规管,而且传统管内 的沸腾换热系数、压降、流态等关联式在应用于微 通道管时偏差很大,对于微通道内CO2管内流动沸 腾干涸现象的研究还处在初始阶段。

4)目前对CO₂管内流动沸腾干涸发生时管内流 态的转变均是采用以往传统关联式进行分析,而且 模型以绝热模型为主,今后需进一步扩展可视化实 验研究观察其干涸过程内部实际流态变化。同时对 于实际应用过程中采用内微翅管,不同管型,含油 等因素对CO₂沸腾换热时干涸的影响仍有待研究。

本文受高等学校博士学科点专项科研基金(200932011 0003)、上海市重点学科建设项目(S30503)、上海高校选 拔培养优秀青年教师科研专项基金(slg08002)、上海市研 究生创新基金项目(JWCXSL0901)资助。(The project was supported by the Research Fund for the Doctoral Program of Higher Education of China (No.2009320110003), Shang hai Leading Academic Discipline Project (No.S30503), Shanghai University Select Outstanding Young Teachers Program (No. slg08002), The Innovation Fund Project For Graduate Student of Shanghai (No.JWCXSL0901))

参考文献

- R Z Wang, Y Li. Perspectives for natural working fluids in China[J].International Journal of Refrigeration, 2007, (30): 568-581.
- [2] K I Choi, A S Pamitran, C Y Oh, et al. Boiling heat transfer of R-22, R-134a, and CO₂ in horizontal smooth minichannels[J]. International Journal of Refrigeration 2007, (30):1336-1346.
- [3] Sehwan In, Sangkwon Jeong. Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel[J]. International Journal of Multiphase Flow, 2009, (35):987-1000.
- [4] Hoo-Kyu Oh, Hak-Geun Ku, Geon-Sang Roh, et al. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube[J]. Applied Thermal Engineering, 2008, (28): 1022-1030.
- [5] Hoo-Kyu Oh, Chang-Hyo Son. Flow boiling heat transfer and pressure drop characteristics of CO₂ in horizontal tube of 4.57-mm inner diameter[J].Applied Thermal Engineering, 2011, (31): 163-172.
- [6] R Yun, Y Kim, M S Kim. Convective boiling heat transfer characteristics of CO₂ in microchannels[J]. Int. J. Heat Mass Transfer, 2005, (48) :235-242.
- [7] A M Bredesen, A Hafner, J Pettersen, et al. Afleckt. Heat

transfer and pressure drop for in-tube evaporation of CO₂[C]// Proceedings of the International Conference on Heat Transfer Issues in Natural Refrigerants,College Park, MD, 1997:1-15.

- [8] Rin Yun, Yongchan Kim, Min Soo Kim, et al. Boiling heat transfer and dryout phenomenon of CO₂ in a horizontal smooth tube[J].International Journal of Heat and Mass Transfer, 2003, (46) :2353-2361.
- [9] Y Taitel, A E Dukler. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[C]// AIChE J. 1976, 22 (1):47-55.
- [10] Yun, R, Kim, et al. Flow regimes for horizontal two-phase flow of CO₂ in a heated narrow rectangular channel[J]. Int. J.Multiphase Flow, 2004, (30):1259-1270.
- [11] Thome, J R, Ribatski, et al. State-of-art of two-phase flow and flow boiling heat transfer and pressure drop of CO_2 in macro and micro-channels[J]. Int. J. Refrigeration, 2005, (28):1149-1168.
- [12] A Inoue, S Lee. Influence of two-phase flow characteristic on critical heat flux in low pressure[C]// International Conference on Nuclear Engineering, vol. 1, ASME, 1996: 657-667.
- [13] T Fujita, T Ueda. Heat transfer to falling liquid films and film breakdown II (saturated liquid films with nucleate boiling) [J].Int. J. Heat Mass Transfer, 1978, (21) :109-118.
- [14] J Pettersen. Flow vaporization of CO₂ in microchannel tubes, Part 1: Experimental method and two-phase flow[C]// Fifth IIR-GustavLorentzen Conference on Natural Working Fluids, Guangzhou, China, 2002: 76-83.
- [15] Yun, R, Kim, et al. Critical quality prediction for saturated flow boiling of CO₂ in horizontal small diameter tubes[J]. Int.J. Heat Mass Transf., 2003, (46):2527-2535.
- [16] V Stevanovic, M Studovic. A simple model for vertical annular and horizontal stratified two-phase flows with liquid entrainment and phase transitions: one-dimensional steady state conditions[J]. Nucl. Eng. Design, 1995, (154) : 357-379.
- [17] V P Carey. Liquid-Vapor Phase-Change Phenomen[J]. Taylor & Francis, 1992:439-448.
- [18] T Sato, H Matsumura. On the conditions of incipient subcooled-boiling with forced convection[J]. Bull. JSME 7,1964, (26): 392-398.
- [19] Zhao Y, Ohadi M M, Dessiatoun S V, et al. Forced convection boiling heat transfer of CO₂ in horizontal tubes[C]. Proceedings of the 5th ASME J SME Joint Thermal Enigneering Conference, March15-19. San Diego, California, USA. 1999.
- [20] 杨亮,丁国良,黄冬平,等.亚临界二氧化碳换热特性研究进展[J].制冷学报,2003,(4):28-34. (Yang Liang, Ding Guoliang, Huang Dongping, et al. Review on Heat Transfer of Subcritical Carbon Dioxide[J]. Journal of Refrigeration, 2003,(4):28-34.)
- [21] 吴晓敏,赵红艺,王维城,等. CO₂在细径管内蒸发换热的 实验研究[J]. 工程热物理学报, 2005, 26(5): 823-825.
 (Wu Xiaomin, Zhao Hongyi, Wang Weicheng, et al. Experimental Study On Evaporating Heat Transfer of CO₂ in Thin Tube [J]. Journal of Engineering Thermophysics, 2005, 26 (5):823-825.)

— 18 —

- [22] J Wu, T Koettig, Ch Franke, et al. Investigation of heat transfer and pressure drop of CO₂ two-phase flow in a horizontal minichannel[J].International Journal of Heat and Mass Transfer, 2011, (58):121-131.
- [23] Y Zhao, M Molki, M M Ohadi, et al. Flow boiling of CO₂ in microchannels[C]//ASHRAE Trans. DA-00-2-1, 2000:437-445.
- [24] R Yun, Y Kim, M S Kim. Flow boiling heat transfer of carbon dioxide in horizontal mini tubes[J]. Int. J. Heat Fluid Flow, 2005, (26): 801-809.
- [25] R Yun, Y Kim. Post-dryout heat transfer characteristics in horizontal mini-tubes and a prediction method for flow boiling of CO₂[J]. International Journal of Refrigeration, 2009, (32): 1085-1091.
- [26] J Pettersen. Flow vaporization of CO₂ in microchannel tubes[J].Exp. Thermal Fluid Sci. 2004, (28):111-121.
- [27] Cheng L, Ribatski G, Quiben J, et al. New prediction methods for CO₂ evaporation inside tubes: part I -a two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops[J]. Int. J Heat Mass Transf., 2008, 51 (1-2): 111-124.
- [28] Chaobin Dang, Nobori Haraguchi, Eiji Hihara. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube[J]. International journal of refrigeration,2010, (33):655-663.
- [29] Bredesen, A M, Hafner, et al. Heat Transfer and Pressure Drop for In-tube Evaporation of CO₂[C]// Proc. of Int. Conference on Heat Transfer Issues in natural refrigerants, University of Maryland, 1997:1-15.
- [30] G F Hewitt, A H Govan. Phenomenological modeling of non-equilibrium flows with phase change[J].Int. J. Heat Mass Transfer, 1990, (33): 229-242.
- [31] A E Schael, M Kind. Flow pattern and heat transfer characteristics during flow boiling of CO_2 in a horizontal micro fin tube and comparison with smooth tube data[J].International Journal of Refrigeration, 2004, (28):1186-1195.
- [32] J Pettersen. Two-phase flow pattern, heat transfer and pressure drop in micro-channel vaporization of CO₂[C]// ASHRAE Transaction (Symposia) 2003: 523-532.
- [33] E Hihara, S Tanaka. Boiling heat transfer of carbon dioxide in horizontal tubes[C]// Proc. 4th IIR-Gustav Lorentzen Conf. On Natural Working Fluids, Purdue University, USA, 2000:279-284.
- [34] Hewitt, G F Pressure drop[C]// Hetsroni G. (Ed.), Handbook of Multiphase System. Hemisphere Publishing Corporation, Washington DC, 1982: 244-275.
- [35] Maxime Ducoulombie, Stéphane Colasson. Carbon dioxide flow boiling in a single microchannel-Part II: Heat transfer[J].Experimental Thermal and Fluid Science, 2011, (34):1021-1031.
- [36] Groeneveld, D C, Delorme, et al. Prediction of thermal non-equilibrium in the post-dryout regime[J]. Nucl. Eng. Design ,1976, (36):17-26.
- [37] E S Cho, S H Yoon, M S Kim. A study on the characteristics of evaporative heat transfer for carbon dioxide in a horizontal tube[C]// Proceedings of the KSME Spring Annual Meeting, 2000:104-107.

- [38] M G Cooper. Heat flow rates in saturated nucleate pool boiling a wide-ranging examination using reduced properties[J]. Advances in Heat Transfer, 1984, (16): 157-239.
- [39] C Y Park, P S Hrnjak. CO₂ and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube[J].International Journal of Refrigeration, 2007, (30): 166-178.
- [40] Xiumin Zhao, P K Bansal. Flow boiling heat transfer characteristics of CO₂ at low temperatures[J].International Journal of Refrigeration, 2007, (30):937-945.
- [41] E Hihara, C Dang. Boiling heat transfer of carbon dioxide in horizontal tubes[C]// Proceedings of 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, 2007:1-7.
- [42] T Yamamoto, Y Ueda, I Ishihara, et al. Flow boiling heat transfer of carbon dioxide at high pressure in horizontal minichannels[C]// Proceedings of the 6th International Conference on Multiphase Flow, 2007.
- [43] Kandlikar S G. Fundamental issues related to flow boiling in minchannels and microchannels[J]. Exp. Therm. Fluid Sci., 2001, (26): 389-407.
- [44] John R Thome, Gherhardt Ribatski. State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO₂ in macro- and micro-channels[J].International Journal of Refrigeration, 2005, (28) :1149-1168.
- [45] C Y Park, P S Hrnjak. Flow boiling heat transfer of CO₂ at low temperatures in a horizontal smooth tube[J]. J. Heat Transfer, 2005, (127):1305-1312.
- [46] Jong-Taek Oha, A S Pamitran, Kwang-Il Choi, et al. Experimental investigation on two-phase flow boiling heat transfer of five refrigerants in horizontal small tubes of 0.5, 1.5 and 3.0 mm inner diameters[J]. International Journal of Heat and Mass Transfer, 2011 (20): 187-197.
- [47] Mamoru Ozawa, Takeyuki Ami, Hisashi Umekawa, et al. Forced flow boiling of carbon dioxide in horizontal minichannel[J].International Journal of Thermal Sciences, 2011, (50) :296-308.
- [48] Lixin Cheng, Gherhardt Ribatski, Leszek Wojtan, et al. New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2006, (49): 4082-4094.

作者简介

张良,男(1980-),博士研究生,上海理工大学能源与 动力工程学院,上海市杨浦区军工路516号,200093, (021)55270981, E-mail: l_zhanghk@163.com。研究方 向:制冷空调节能方向的研究。参与研究项目:国家高技 术研究发展计划(863计划,2007AA05Z211)项目。

About the author

Zhang Liang (1980–), male, Ph.D. Candidate, School of Energy and Power Engineering, University of Shanghai for Science and Technology, 516#, Jungong Road, Shanghai, China, 200093, (021) 55270981, E-mail: l_zhanghk@163. com. Research fields: energy saving in refrigeration and airconditioning systems. The author participates in National Hightech R&D Program (863 Program, No.2007AA05Z211).