浏览全部资源
扫码关注微信
1.河北建筑工程学院 河北省可再生能源供热工程技术中心 张家口 075000
2.北京工业大学环境与生命学部 北京 100124
3.河北水利电力学院 河北省数据中心相变热管理技术创新中心 沧州 061001
Ma Guoyuan, male, Ph. D., professor, Ph. D. supervisor, Department of Environment and Life, Beijing University of Technology, 86-13911020383, E-mail: magy@bjut.edu.cn. Research fields: new technology for environmental protection and energy saving in refrigeration and air-conditioning systems.
Published:16 December 2024,
Received:17 July 2023,
Revised:26 October 2023,
Accepted:2023-11-14
移动端阅览
NIU JIANHUI, LIANG ZHENG, LIU FUSHENG, et al. Experimental Study on Air-Source Heat Pump Alternate Defrosting with Multiple Outdoor Units in Parallel. [J]. Journal of refrigeration, 2024, 45(6): 158-166.
NIU JIANHUI, LIANG ZHENG, LIU FUSHENG, et al. Experimental Study on Air-Source Heat Pump Alternate Defrosting with Multiple Outdoor Units in Parallel. [J]. Journal of refrigeration, 2024, 45(6): 158-166. DOI: 10.12465/j.issn.0253-4339.2024.06.158.
设计并搭建了多台室外机并联空气源热泵实验系统,采用热液过冷对室外机进行轮换除霜。实验研究在不同室外温、湿度条件下系统制热性能随结、除霜的变化特点,并与热气旁通轮换除霜对比。结果表明:热液过冷轮换除霜效果良好,当室外侧空气温度为-10 ℃、相对湿度为90%时,最佳开始除霜时间为30 min,系统制热量由无霜时的9.87 kW降至开始除霜时的8.71 kW,制热COP由无霜时的3.73降至开始除霜时的3.36。不同湿度工况下运行除霜时,系统制热量及制热COP最小值可达5.42 kW、2.28。与旁通20%热气除霜相比,热液过冷轮换除霜平均制热量提升13.8%、制热COP
C
提升10.1%。
An experimental system of an air-source heat pump with multiple outdoor units in parallel was designed and built. The outdoor units were defrosted in turn using hot subcooled liquid for defrosting. The heat pump heating performance variations in the course of frostin
g and defrosting under different outdoor temperature and humidity conditions were experimentally studied
and the heating performances of the hot liquid subcooling alternate defrosting system and hot gas bypass alternate defrosting system were compared and analyzed. The experimental results show that the hot liquid subcooling alternate defrosting can enable the heat pump to complete the defrosting under the condition of continuous heating and that the defrosting performance is good. When the outdoor air temperature is -10 ℃ and the relative humidity is 90%
the optimal time to start defrosting is 30 min. At this time
the system heating capacity decreases from 9.87 kW when there is no frost to 8.71 kW when the defrosting starts
and the heating COP decreases from 3.73 to 3.36. When the system operates defrosting under different humidity conditions
the minimum values of system heating capacity and heating COP can reach 5.42 kW and 2.28
respectively. Compared to the case of bypassing 20% of discharge gas for defrosting
the average heating capacity of hot liquid subcooling alternate defrosting is 13.8% higher
and the heating COP
C
is 10.1% higher.
空气源热泵热液除霜热气除霜制热性能
air-source heat pumphot liquid defrostinghot gas defrostingheating performance
俞丽华, 马国远, 徐荣保. 低温空气源热泵的现状与发展[J]. 建筑节能, 2007, 35(3):54-57. (
YU Lihua, MA Guoyuan, XU Rongbao. Current status and development of low temperature air-source heat pump[J]. Building Energy Efficiency, 2007, 35(3):54-57.)
GUO Xianmin, CHEN Yiguang, WANG Weihua, et al. Experimental study on frost growth and dynamic performance of air source heat pump system[J]. Applied Thermal Engineering, 2008, 28(17/18): 2267-2278.
MOHANRAJ M, JAYARAJ S, MURALEEDHARAN C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1340-1358.
MAO Ning, SONG Mengjie, DENG Shiming, et al. Experimental and numerical study on air flow and moisture transport in sleeping environments with a task/ambient air conditioning (TAC) system[J]. Energy and Buildings, 2016, 133: 596-604.
HAKKAKI-FARD A, AIDOUN Z, OUZZANE M. Applying refrigerant mixtures with thermal glide in cold climate air-source heat pumps[J]. Applied Thermal Engineering, 2014, 62(2): 714-722.
DONG Jiankai, JIANG Yiqiang, YAO Yang, et al. Operating performance of novel reverse-cycle defrosting method based on thermal energy storage for air source heat pump[J]. Journal of Central South University of Technology, 2011, 18(6): 2163-2169.
GONG Guangcai, TANG Jinchen, LYU Dongyan, et al. Research on frost formation in air source heat pump at cold-moist conditions in central-south China[J]. Applied Energy, 2013, 102: 571-581.
MAO Ning, SONG Mengjie, DENG Shiming. Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort[J]. Applied Energy, 2016, 180: 536-545.
SONG Mengjie, XIA Liang, MAO Ning, et al. An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil[J]. Applied Energy, 2016, 164: 36-44.
QU Minglu, LI Tianrui, DENG Shiming, et al. Improving defrosting performance of cascade air source heat pump using thermal energy storage based reverse cycle defrosting method[J]. Applied Thermal Engineering, 2017, 121: 728-736.
王仕杰, 杨灵艳. 空气源热泵供暖产品及应用现状分析[J]. 建设科技, 2022(5): 107-110.(
WANG Shijie, YANG Lingyan. Analysis on product development and technology application of air source heat pump heating[J]. Construction Science and Technology, 2022(5): 107-110.)
DING Yanjun, MA Guoyuan, CHAI Qinhu, et al. Experiment investigation of reverse cycle defrosting methods on air source heat pump with TXV as the throttle regulator[J]. International Journal of Refrigeration, 2004, 27(6): 671-678.
JANG J Y, BAE H H, LEE S J, et al. Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency[J]. Applied Energy, 2013, 110: 9-16.
SONG Mengjie, LIU Shengchun, DENG Shiming, et al. Experimental investigation on reverse cycle defrosting performance improvement for an ASHP unit by evenly adjusting the refrigerant distribution in its outdoor coil[J]. Applied Thermal Engineering, 2017, 114: 611-620.
CHOI H J, KIM B S, KANG D, et al. Defrosting method adopting dual hot gas bypass for an air-to-air heat pump[J]. Applied Energy, 2011, 88(12): 4544-4555.
胡文举, 姜益强, 姚杨, 等. 基于除霜的相变蓄热器对空气源热泵性能的影响[J]. 天津大学学报, 2009, 42(10): 908-912. (
HU Wenju, JIANG Yiqiang, YAO Yang, et al. Effect of PCM based heat exchanger for defrosting on performance of air source heat pump[J]. Journal of Tianjin University, 2009, 42(10):908-912.)
ABDEL-WAHED R M, HIFNI M A, SHERIF S A. Hot water defrosting of a horizontal flat plate cooling surface[J]. International Journal of Refrigeration, 1983, 6(3): 152-154.
LIU Zhongbao, FAN Pengyan, WANG Qinghua, et al. Air source heat pump with water heater based on a bypass-cycle defrosting system using compressor casing thermal storage[J]. Applied Thermal Engineering, 2018, 128: 1420-1429.
石文星, 李先庭, 邵双全. 房间空调器热气旁通法除霜分析及实验研究[J]. 制冷学报, 2000, 21(2): 29-35. (
SHI Wenxing, LI Xianting, SHAO Shuangquan. Experimental research on hot vapor bypass defrosting method[J]. Journal of Refrigeration, 2000,21 (2): 29-35.)
XI Zhanli, YAO Runming, LI Jinbo, et al. Experimental studies on hot gas bypass defrosting control strategies for air source heat pumps[J]. Journal of Building Engineering, 2021, 43: 103165.
BYUN J S, LEE J, JEON C D. Frost retardation of an air-source heat pump by the hot gas bypass method[J]. International Journal of Refrigeration, 2008, 31(2): 328-334.
赖想球, 张桃. 热气旁通除霜在变频热泵空调机的应用研究[J]. 制冷与空调(北京), 2017, 17(6): 24-27. (
LAI Xiangqiu, ZHANG Tao. Research on application of hot gas bypass in the frequency conversion heat pump air conditioner[J]. Refrigeration and Air-conditioning, 2017, 17(6): 24-27.)
HUANG Dong, LI Quanxu, YUAN Xiuling. Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump[J]. Applied Energy, 2009, 86(9): 1697-1703.
STOECKER W F. Selecting the size of pipes carrying hot gas to defrost evaporators[J]. International Journal of Refrigeration, 1984, 7(4): 225-228.
黄挺, 姜益强. 空气源热泵除霜用相变蓄热器蓄放热特性影响因素的模拟研究[J]. 制冷与空调(四川), 2009, 23(5):11-15. (
HUANG Ting, JIANG Yiqiang. Simulation of thermal energy storage heat exchanger used for defrosting in air source heat pump[J]. Refrigeration & Air Conditioning, 2009, 23(5): 11-15.
丁艳, 蔡乐, 袁隆基. 低温空气源热泵相变蓄热除霜性能模拟研究[J]. 制冷与空调(四川), 2021, 35(3):342-346. (
DING Yan, CAI Le, YUAN Longji. Simulation of phase change heat storage defrosting performance of low temperature air source heat pump[J]. Refrigeration & Air Conditioning, 2021, 35(3):342-346.)
曲明璐, 李天瑞, 樊亚男, 等. 复叠式空气源热泵蓄能除霜与常规除霜特性实验研究[J]. 制冷学报, 2017, 38(1):34-39. (
QU Minglu, LI Tianrui, FAN Yanan, et al. Experimental study on characteristics of energy storage defrosting and conventional defrosting for cascade air source heat pump[J]. Journal of Refrigeration, 2017, 38(1):34-39.)
储碧峰, 周恩泽, 郭健翔, 等. 空气源热泵溶液喷淋除霜系统及初步实验研究[J]. 低温与超导, 2019, 47(5):49-54. (
CHU Bifeng, ZHOU Enze, GUO Jianxiang, et al. Preliminary experimental study on spray solution defrosting system for air-source heat pump[J]. Cryogenics & Superconductivity, 2019, 47(5):49-54.)
NIU Jianhui, MA Guoyuan, XU Shuxue. Experimental research on hot liquid defrosting system with multiple evaporators[J]. Applied Thermal Engineering, 2020, 179: 115710.
费业泰. 误差理论与数据处理[M]. 7版. 北京: 机械工业出版社, 2015. (
FEI Yetai. Error theory and data processing[M]. 7th ed. Beijing: China Machine Press, 2015.)
0
Views
33
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution