浏览全部资源
扫码关注微信
1.山东建筑大学热能工程学院 济南 250101
2.山东省碳中和技术创新中心 济南 250101
3.中华全国供销合作总社济南果品研究所 济南 250200
4.山东省鲁商冰轮建筑设计有限公司 济南 250013
Wang Da, male, Ph. D., Shandong Technology Innovation Center of Carbon Neutrality, 86-13406400470, E-mail:wangda19910@163.com. Research fields: research and development of cold chain preservation technology and equipment for agricultural pro-ducts after harvesting.
Published:16 December 2024,
Received:28 September 2023,
Revised:09 November 2023,
Accepted:2023-12-08
移动端阅览
HAN DANDAN, WANG QIANG, WANG DA, et al. Freezing Performance of Heat Pipe Integrated Cold Storage Plate Based on Orthogonal Experiments. [J]. Journal of refrigeration, 2024, 45(6): 99-105.
HAN DANDAN, WANG QIANG, WANG DA, et al. Freezing Performance of Heat Pipe Integrated Cold Storage Plate Based on Orthogonal Experiments. [J]. Journal of refrigeration, 2024, 45(6): 99-105. DOI: 10.12465/j.issn.0253-4339.2024.06.099.
车载蓄冷板是充冷式冷藏车的重要组成部分,缩短蓄冷板充冷时间对提高冷链物流的效率具有重要作用。提出了一种热管换热蓄冷板,模拟研究了蓄冷板充冷冻结过程,并通过实验验证了理论模型的可靠性。利用正交试验方法研究了热管管径、管间距、通道内载冷剂流速、雷诺数对蓄冷板充冷性能的影响。研究表明:常规单层厚度约为50 mm蓄冷板状态下,管径为7 mm、管间距为39 mm、通道内载冷剂流速为1.2 m/s、雷诺数为3.89时(最优参数),平均冻结时间和完全冻结时间分别为45 min和78 min;与现有文献报道的结果相对比,最优参数下热管换热蓄冷板的充冷时间大幅缩短。
The vehicle-mounted cold storage plate is an important part of a refrigerated vehicle. Charging time reduction of the cold storage plate has an important role in improving the efficiency of cold chain logistics. A heat pipe integrated cold storage plate was proposed
and the cooling and freezing processes of the cold storage plate were simulated and studied. The reliability of the theoretical model was verified through experiments. The influences of the heat pipe diameter
pipe spacing
refrigerant flow rate in the channel
and Reynolds number on the cooling performance of the cold storage plate were studied using the orthogonal experimental method. Under the condition of a conventional cold storage plate with a single-layer thickness of approximately 50 mm
a pipe diameter of 7 mm
pipe spacing of 39 mm
refrigerant flow rate of 1.2 m/s in the channel
and Reynolds number of 3.89 (optimal parameter)
the average freezing time and complete freezing time are 45 min and 78 min
respectively. Compared to the results reported in the literature
the cooling time of the heat pipe integrated cold storage plate under the optimal parameters is significantly reduced.
热管换热蓄冷板充冷性能正交试验
heat pipe heat transfercold storage platefreezing performanceorthogonal experiments
张君瑛, 章学来. 蓄冷式冷藏运输[J]. 能源技术, 2005, 26(3): 127-128. (
ZHANG Junying, ZHANG Xuelai. The cool storage cargo transportation[J]. Energy Technology, 2005, 26(3): 127-128.)
刘国丰. 蓄冷式冷藏运输装备的应用研究[D]. 长沙: 中南大学, 2007. (
LIU Guofeng. Study on application of cold storage refrigerated transportation equipment[D]. Changsha: Central South University, 2007.)
赵祎, 章学来, 徐笑锋, 等. 应用于冷链运输相变蓄冷技术研究进展[J]. 包装工程, 2020, 41(21): 117-124. (
ZHAO Yi, ZHANG Xuelai, XU Xiaofeng, et al. Research progress of phase change cold storage technology applied to cold chain transportation[J]. Packaging Engineering, 2020, 41(21): 117-124.)
肖颖, 徐添桦, 叶晔, 等. 充冷式冷板冷藏车厢体设计及保鲜效果分析[J]. 中国工程机械学报, 2022, 20(6): 537-541. (
XIAO Ying, XU Tianhua, YE Ye, et al. Design of cold-charging cold plate refrigerated carriage and analysis of its fresh-keeping effect[J]. Chinese Journal of Construction Machinery, 2022, 20(6): 537-541.)
ZHANG Yu, YUAN Guofeng, WANG Yan, et al. Solidification of an annular finned tube ice storage unit[J]. Applied Thermal Engineering, 2022, 212: 118567.
JANNESARI H, ABDOLLAHI N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems[J]. Applied Energy, 2017, 189: 369-384.
夏晶晶, 林诗涛, 王飞仁, 等. 基于PIV可视化的蓄冷板外围流场优化研究[J]. 中国农机化学报, 2022, 43(5): 127-133. (
XIA Jingjing, LIN Shitao, WANG Feiren, et al. Research on flow field optimization of cold storage plate periphery based on PIV visualization[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 127-133.)
AL-SHANNAQ R, YOUNG B, FARID M. Cold energy storage in a packed bed of novel graphite/PCM composite spheres[J]. Energy, 2019, 171: 296-305.
赵祎. 热管式蓄冷器的设计与热动力学分析[J]. 上海节能, 2019(12): 997-1002. (
ZHAO Yi. Design and thermodynamic analysis of heat pipe regenerator[J]. Shanghai Energy Conservation, 2019(12): 997-1002.)
RODRÍGUEZ-BERMEJO J, BARREIRO P, ROBLA J I, et al. Thermal study of a transport container[J]. Journal of Food Engineering, 2007, 80(2): 517-527.
LIU Ming, BRUNO F, SAMAN W. Thermal performance analysis of a flat slab phase change thermal storage unit with liquid-based heat transfer fluid for cooling applications[J]. Solar Energy, 2011, 85(11): 3017-3027.
贾斌广, 王达, 刘芳, 等. 蓝莓预冷箱的设计优化[J]. 制冷学报, 2019, 40(2): 129-134. (
JIA Binguang, WANG Da, LIU Fang, et al. Design optimization of blueberry pre-cooling box[J]. Journal of Refrigeration, 2019, 40(2): 129-134.)
贾连文, 贾斌广, 王达, 等. 不同送风方式下樱桃压差预冷的数值模拟[J]. 保鲜与加工, 2019, 19(5): 1-6. (
JIA Lianwen, JIA Binguang, WANG Da, et al. Numerical simulation of pressure difference pre-cooling of cherry in different air supply modes[J]. Storage and Process, 2019, 19(5): 1-6.)
诸凯, 刘泽宽, 何为, 等. 数据中心服务器CPU水冷散热器的优化设计[J]. 制冷学报, 2019, 40(2): 36-42. (
ZHU Kai, LIU Zekuan, HE Wei, et al. Optimal design of CPU water-cooled radiator in a data center server[J]. Journal of Refrigeration, 2019, 40(2): 36-42.)
朱先锋, 陈焕新, 刘国丰. 影响冷板蓄冷量及充冷时间的因素[J]. 铁道机车车辆, 2004, 24(2): 37-39. (
ZHU Xianfeng, CHEN Huanxin, LIU Guofeng. Affecting factors of cold storage capacity and charging time of hold-over plate[J]. Railway Locomotive & Car, 2004, 24(2): 37-39.)
SHANKAR PRASAD U, MISHRA R S, DAS R K. Experimental studies of vapour compression refrigeration system with eco-friendly primary refrigerant and brine mixed with nano particles as secondary refrigerant[J]. Materials Today: Proceedings, 2021, 45: 3857-3859.
NARAYANAMURTHY R. Multiple refrigerant thermal energy storage and cooling system with secondary refrigerant isolation:US8707723 [P]. 2011-01-06.
尹翾. 环路热管非能动安全壳冷却系统热工水力特性研究[D]. 济南: 山东大学, 2022. (
YIN Xuan. Study on thermal and hydraulic characteristics of passive containment cooling system with loop heat pipe[D]. Jinan: Shandong University, 2022.)
李九龙. 直拉法和定向凝固法晶硅生长热场设计的传热传质数值研究[D]. 镇江: 江苏大学, 2022. (
LI Jiulong. Numerical study on heat and mass transfer in thermal field design of crystalline silicon growth for czochralski and directional solidification method[D]. Zhenjiang: Jiangsu University, 2022.)
叶宇轩. 熔盐相变过程的强化传热数值模拟及实验研究[D]. 济南: 山东大学, 2020. (
YE Yuxuan. Experimental and numerical simulation of enhanced heat transfer in molten salt phase change process[D].Jinan: Shandong University, 2020.)
王刚. 基于三水合醋酸钠稳定过冷特性的灵活相变储热装置的研究[D]. 北京: 华北电力大学, 2021. (
WANG Gang. Flexible phase change thermal storage study based on stable supercooling of sodium acetate trihydrate[D]. Beijing: North China Electric Power University, 2021.)
杨天润. 基于相变材料的冷库储能系统设计及优化[D]. 济南: 山东大学, 2018. (
YANG Tianrun. Design and optimization of the cold energy storage system based on phase change materials[D]. Jinan: Shandong University, 2018.)
ZHANG Mao, WANG Xian, GAO Qinqin, et al. Optimization of process parameters and mechanism of strengthening and toughening of Nb-W alloy prepared by chemical vapor deposition based on orthogonal test[J]. Materials Research Express, 2023, 10(2): 026511.
田津津, 郭永刚, 张哲, 等. 蓄冷板冻结过程的数值模拟与实验研究[J]. 低温与超导, 2014, 42(2): 67-71. (
TIAN Jinjin, GUO Yonggang, ZHANG Zhe, et al. Numerical simulation and experiment research on cold plate freezing process[J]. Cryogenics & Superconductivity, 2014, 42(2): 67-71.)
ÖZLEM T, GÖZDE U M. An adapted linear modeling method for interval-valued responses: golden center and range method[J]. Communications in Statistics: Case Studies, Data Analysis and Applications, 2022, 8(3): 463-483.
任静薇, 刘鸣, 高树峰, 等. 基于热舒适的寒冷地区既有住宅围护结构节能改造[J]. 城市建筑, 2021, 18(7): 20-24. (
REN Jingwei, LIU Ming, GAO Shufeng, et al. Energy-saving renovation of the existing residential enclosure structure in cold areas based on thermal comfort[J]. Urbanism and Architecture, 2021, 18(7): 20-24.)
张哲, 王飒飒, 李立民, 等. 蓄冷板冻结与释冷的实验研究[J]. 低温工程, 2015(1): 64-68. (
ZHANG Zhe, WANG Sasa, LI Limin, et al. Experimental research on freezing and discharging processes of cold plate[J]. Cryogenics, 2015(1): 64-68.)
AFSHARPANAH F, CHERAGHIAN G, AKBARZADEH HAMEDANI F, et al. Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings[J]. Nanomaterials (Basel), 2022, 12(11): 1927.
张宇. 翅片式蓄冷装置相变凝固过程研究[D]. 徐州: 中国矿业大学, 2022. (
ZHANG Yu. Study on the phase change solidification process of finned ice storage device[D]. Xuzhou: China University of Mining and Technology, 2022.)
0
Views
27
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution