浏览全部资源
扫码关注微信
北京工业大学制冷与低温工程系 北京 100124
Zhou Feng, male, appointed professor, Department of Refrigeration and Cryogenics Engineering, Beijing University of Technology, 86-10-67391613, E-mail:zhoufeng@bjut.edu.cn. Research fields: energy utilization and environment control technology of refrigeration and air conditioning, low carbon energy saving technology in data centers, energy saving technology for green buildings, phase-change heat transfer, refrigerant replacement.
Published:16 December 2024,
Received:29 July 2023,
Revised:25 October 2023,
Accepted:2023-11-14
移动端阅览
ZHOU FENG, WANG RUIMIN, MA GUOYUAN, et al. Research and Application Progress of Phase-Change Working Fluid for High-Heat-Flux Liquid Cooling Servers. [J]. Journal of refrigeration, 2024, 45(6): 23-32.
ZHOU FENG, WANG RUIMIN, MA GUOYUAN, et al. Research and Application Progress of Phase-Change Working Fluid for High-Heat-Flux Liquid Cooling Servers. [J]. Journal of refrigeration, 2024, 45(6): 23-32. DOI: 10.12465/j.issn.0253-4339.2024.06.023.
随着数据中心数量与规模的增加,高热流服务器占比逐渐增大,传统的风冷已不能满足散热及节能要求,具有较大汽化潜热和较高传热系数的相变液冷技术应运而生。针对相变液冷系统的研究主要涉及系统性能提升、系统对比以及系统的热管理,而工质是其中实现热量转移的重要载体,对液冷实施效果至关重要。为此,对相变液冷工质的选择原则进行介绍,并根据直接和间接两种不同的接触方式,对目前6类有关相变工质(自然工质、HFCs、 HFOs、PFCs、 HFEs、混合工质)的研究及应用进展进行了梳理、总结、分析,同时对相变液冷工质的后续研究进行展望。
The proportion of high-heat-flux servers has gradually increased with the increasing number and scale of data centers. Traditional air cooling cannot handle the heat dissipation and energy saving needs. In this regard
the liquid cooling technology with a large latent heat and high heat transfer coefficient has emerged. Research on liquid cooling systems primarily focuses on system efficiency enhancement
system comparison
and overall thermal management. Among them
the working fluid
as an important medium for heat exchange
is crucial for the liquid system performance. In this paper
selection principles of phase-change working fluid are proposed. The investigations and application progress of six types of phase-change working fluid (natural working medium
HFCs
HFOs
PFCs
HFEs
mixed working medium) are reviewed
summarized
and analyzed according to the contact modes (direct and indirect). The prospects for future research on phase-change liquid cooling fluids are presented.
数据中心热流密度液冷相变工质
data centerheat fluxliquid coolingphase-change working fluid
EBRAHIMI K, JONES G F, FLEISCHER A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 622-638.
HAYWOOD A M, SHERBECK J, PHELAN P, et al. The relationship among CPU utilization, temperature, and thermal power for waste heat utilization[J]. Energy Conversion and Management, 2015, 95: 297-303.
赛迪顾问股份有限公司. 中国液冷数据中心发展白皮书[R]. 北京:赛迪顾问股份有限公司, 2020. (
CCID Consulting Co., Ltd. White paper on the development of liquid-cooled data centers in China[R]. Beijing: CCID Consulting Co., Ltd., 2020.)
RAMAKRISHNAN B, HOANG C H, KHALILI S, et al. Experimental characterization of two-phase cold plates intended for high-density data center servers using a dielectric fluid[J]. Journal of Electronic Packaging, 2021, 143(2): 4049928.
CHI Y Q, SUMMERS J, HOPTON P, et al. Case study of a data centre using enclosed, immersed, direct liquid-cooled servers[C]//Annual IEEE Semiconductor Thermal Measurement and Management Symposium. New York: IEEE, 2014: 164-173.
LEVIN I I, DORDOPULO A I, DORONCHENKO Y I, et al. Immersion liquid cooling FPGA-based reconfigurable computer system[J]. IFAC-PapersOnLine, 2016, 49(25): 366-371.
ZHANG Ying, LI Chao, PAN Minqiang. Design and performance research of integrated indirect liquid cooling system for rack server[J]. International Journal of Thermal Sciences, 2023, 184: 107951.
ZHOU Guohui, ZHOU Jingzhi, HUAI Xiulan, et al. A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers[J]. Applied Thermal Engineering, 2022, 210: 118289.
肖新文,曾春利,邝旻. 直接接触冷板式液冷在数据中心的运用探讨[J]. 制冷与空调(北京), 2018, 18(6): 67-72. (
XIAO Xinwen, ZENG Chunli, KUANG Min. Application of direct contacted liquid cooling system in data center[J]. Refrigeration and Air-conditioning, 2018, 18(6): 67-72.)
LIU Pengfei, KANDASAMY R, HO J Y, et al. Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling[J]. Energy, 2023, 269: 126835.
数据中心冷板式液冷服务器系统技术要求和测试方法: YD/T 3980—2021[S]. 北京:人民邮电出版社, 2021. (
Technical requirements and test methods for cold plate liquid cooling server system of data center: YD/T 3980—2021[S]. Beijing: Posts & Telecom Press, 2021.)
数据中心浸没式液冷服务器系统技术要求和测试方法: YD/T 3979—2021[S]. 北京:人民邮电出版社, 2021. (
Technical requirements and test methods for immersion liquid cooling server system of data center: YD/T 3979—2021[S]. Beijing: Posts & Telecom Press, 2021.)
数据中心喷淋式液冷服务署系统技术要求和测试方法: YD/T 3981—2021[S]. 北京:人民邮电出版社, 2021.(
Technical requirements and test methods for spray liquid cooling server system of data center: YD/T 3981—2021[S]. Beijing:Posts & Telecom Press, 2021.)
数据中心液冷系统冷却液体技术要求和测试方法:YD/T 3982—2021[S]. 北京:人民邮电出版社, 2021.(
Technical requirements and test methods for cooling liquids of data center liquid cooling systems: YD/T 3982—2021[S]. Beijing: Posts & Telecom Press, 2021.)
骆清怡, 王长宏. 数据中心多尺度热管理策略综述[J]. 制冷技术, 2021, 41(3): 1-11. (
LUO Qingyi, WANG Changhong. Review of multi-scale thermal manage-ment strategy in data center[J]. Chinese Journal of Refrigeration Technology, 2021, 41(3): 1-11.)
CHETHANA G D, GOWDA B S. Thermal management of air and liquid cooled data centres: a review[C]//Materials Today: Proceedings. Amsterdam: Elsevier Ltd., 2021, 45:145-149.
HABIBI KHALAJ A, HALGAMUGE S K. A Review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system[J]. Applied Energy, 2017, 205: 1165-1188.
OHADI M M, DESSIATOUN S V, CHOO K, et al. A comparison analysis of air, liquid, and two-phase cooling of data centers[C]//Annual IEEE Semiconductor Thermal Measurement and Management Symposium. New York: IEEE, 2012: 58-63.
ZIMMERMANN S, MEIJER I, TIWARI M K, et al. Aquasar: a hot water cooled data center with direct energy reuse[J]. Energy, 2012, 43(1): 237-245.
SHAHI P, AGARWAL S, SAINI S, et al. CFD analysis on liquid cooled cold plate using copper nanoparticles[D]. Arlington:University of Texas at Arlington, 2020.
WADA M, MATSUNAGA A, SATO M, et al. Phase change cooling with evaporative condenser at data centers[C]//15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. New York: IEEE, 2016: 1280-1286.
KARWA N. Ultra-low global warming potential heat transfer fluids for pumped two-phase cooling in HPC data centers[C]//19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. New York: IEEE, 2020: 283-290.
MARCINICHEN J B, OLIVIER J A, THOME J R. On-chip two-phase cooling of datacenters: cooling system and energy recovery evaluation[J]. Applied Thermal Enginee-ring, 2012, 41: 36-51.
OLIVIER J A, MARCINICHEN J B, BRUCH A, et al. Green cooling of high performance microprocessors: parametric study between flow boiling and water cooling[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(4): 041003.
KARWA N, MOTTA S Y. Low-pressure heat transfer fluids for pumped two-phase cooling[C]//20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. New York: IEEE, 2021: 188-196.
杨琳. 通信机柜背板式油冷散热装置的试验研究[D]. 广州: 广东工业大学, 2020. (
YANG Lin. Experimental study on back-plate water-cooling radiator of communication cabinet[D].Guangzhou: Guangdong University of Technology, 2020.)
SHAH J M, EILAND R, SIDDARTH A, et al. Effects of mineral oil immersion cooling on IT equipment reliability and reliability enhancements to data center operations[C]//15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. New York: IEEE, 2016:316-325.
RAMAKRISHNAN B, ALISSA H, MANOUSAKIS I, et al. CPU overclocking: a performance assessment of air, cold plates, and two-phase immersion cooling[J]. IEEE transactions on components, packaging, and manufacturing technology, 2021, 11(10): 1703-1715.
刘圣春, 徐智明, 李雪强, 等. 单相浸没式液冷箱体关键参数的仿真研究[J]. 制冷学报, 2023, 44(2): 159-166. (
LIU Shengchun, XU Zhiming, LI Xueqiang, et al. Simulation study on key parameters of single-phase liquid-cooling cabinet in data centers[J]. Journal of Refrigeration, 2023, 44(2): 159-166.)
HOANG C H, MOHSENIAN G, FALLATAFTI N, et al. Effects of different coolants on the cooling performance of an impingement microchannel cold plate[C]//37th Semiconductor Thermal Measurement, Modeling & Management Symposium. New York: IEEE, 2021:43-49.
KANBUR B B, WU Chenlong, FAN Simiao, et al. System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments[J]. Energy, 2021, 217: 119373.
DING Tao, CAO Hanwen, HE Zhiguang, et al. Experi-mental study on a loop thermosyphon cooling system in data centers using CO2 as a working fluid, especially thermal environment and energy-saving effect[J]. Applied Thermal Engineering, 2020, 175: 115359.
OUCHI M, ABE Y, FUKAGAYA M, et al. Thermal management systems for data centers with liquid cooling technique of CPU[C]//13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. New York: IEEE, 2012:790-798.
KONDOU C, UMEMOTO S, KOYAMA S, et al. Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze(Z) and R1234ze(E) with a super-hydrophilic boiling surface[J]. Applied Thermal Engineering, 2017, 118: 147-158.
蒋振. 高热通量径向辐射脉动热管传热性能的研究[D]. 大连:大连理工大学, 2022.(
JIANG Zhen. Experimental investigation on heat transfer performance of radial pulsating heat pipe applied for high heat-flux[D]. Dalian: Dalian University of Technology, 2022.)
李晨阳. 面向IGBT模块的微通道两相散热器性能研究[D]. 杭州: 浙江大学, 2022. (
LI Chenyang. Research on heat dissipation performance of micro-channel two-phase heat sink for IGBT module[D].Hangzhou: Zhejiang University, 2022.)
孙少鹏. 高热流密度电子元件喷雾相变冷却系统的研究[D]. 重庆: 重庆大学, 2010. (
SUN Shaopeng. Research on spray cooling system for electronics with high heat flux[D].Chongqing: Chongqing University, 2010.)
HOU Yu, LIU Jionghui, SU Xuemei, et al. Experimental study on the characteristics of a closed loop R134a spray cooling[J]. Experimental Thermal and Fluid Science, 2015, 61: 194-200.
TAN Y B, XIE J L, DUAN F, et al. Multi-nozzle spray cooling for high heat flux applications in a closed loop system[J]. Applied Thermal Engineering, 2013, 54(2): 372-379.
KANDASAMY R, HO J Y, LIU Pengfei, et al. Two-phase spray cooling for high ambient temperature data centers: evaluation of system performance[J]. Applied Energy, 2022, 305: 117816.
夏爽. 浸没式相变液冷服务器的数值模拟研究[D]. 济南: 山东大学, 2021. (
XIA Shuang. Numerical simulation research on the immersion cooling with phase change liquid for servers[D]. Jinan: Shandong University, 2021.)
张志伟. 高热流密度电子设备喷雾冷却与微通道散热器的传热特性研究[D]. 南京: 南京理工大学, 2022. (
ZHANG Zhiwei. Study on spray cooling of high heat flux electronic equipment and heat transfer characteristics of microchannel radiator[D]. Nanjing: Nanjing University of Science and Technology, 2022.)
吴曦蕾, 刘滢, 倪航, 等. 不同电子氟化液对浸没式相变冷却系统性能的影响[J]. 制冷学报, 2021, 42(4): 74-82. (
WU Xilei, LIU Ying, NI Hang, et al. Effect of different electronic cooling liquid on the performance of immersion phase change cooling system[J]. Journal of Refrigeration, 2021, 42(4): 74-82.)
SUN Xiaoqing, HAN Zongwei, LI Xiuming. Simulation study on cooling effect of two-phase liquid-immersion cabinet in data center[J]. Applied Thermal Engineering, 2022, 207: 118142.
WARRIER P, SATHYANARAYANA A, JOSHI Y, et al. Screening and evaluation of mixture formulations for electronics thermal management using pool boiling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(9): 1387-1394.
JUNGHANS J. Development of spray cooling for high heat flux electronics[D]. Arkansas: University of Arkansas, 2011.
WARRIER P, SATHYANARAYANA A, PATIL D V, et al. Novel heat transfer fluids for direct immersion phase change cooling of electronic systems[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3379-3385.
0
Views
53
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution