浏览全部资源
扫码关注微信
1.上海交通大学机械与动力工程学院 上海 200240
2.上海交通大学前瞻交叉研究中心 上海 200240
Qian Xiaoshi, male, professor, School of Interdisciplinary Research Center, Shanghai Jiao Tong University, 86-21-34205893, E-mail: xsqian@sjtu.edu.cn. Research fields: electrocaloric cooling material and device design; artificial bandgap material and metamaterial systems; dielectric and ferroelectric materials and devices; magnetoelectric sensing and transducer design; flexible electronic materials and smart devices.
Published:16 December 2024,
Received:28 January 2024,
Revised:11 March 2024,
Accepted:2024-03-28
移动端阅览
YANG SHIHAO, QIAN XIAOSHI. Electrocaloric Cooling Technology: Current Device Developments and Prospects of High-Entropy Ferroelectric Materials. [J]. Journal of refrigeration, 2024, 45(6): 14-22.
YANG SHIHAO, QIAN XIAOSHI. Electrocaloric Cooling Technology: Current Device Developments and Prospects of High-Entropy Ferroelectric Materials. [J]. Journal of refrigeration, 2024, 45(6): 14-22. DOI: 10.12465/j.issn.0253-4339.2024.06.014.
电卡制冷技术是一种基于电场调控的固态制冷技术,该技术利用电卡材料在电场作用下产生的温度变化来实现制冷效果。该技术因无直接碳排放、高效率等优点,在全球变暖和碳减排目标的背景下,受到广泛关注。自2006年巨电卡效应发现以来,电卡制冷技术经历了快速发展,尤其是在电卡材料和器件的改进方面取得了显著进展。从电卡制冷器件研究、电卡聚合物纳米复合材料和电卡材料高熵优化方面展开分析与讨论。介绍了电卡效应的基本原理和当前主动回热式电卡制冷器件的研究进展,总结了电卡聚合物纳米复合材料的研究进展以及高熵优化策略和界面极化增强策略,展望了电卡制冷技术在工质和系统领域的未来研究方向。
Electrocaloric cooling is a solid-state cooling technique based on the manipulation of electric fields. This technology utilizes the temperature variations induced in electrocaloric materials under the influence of an electric field to achieve refrigeration effects. Owing to its advantages
such as zero direct carbon emissions and high efficiency
it has garnered widespread attention
particularly in the context of global warming and carbon reduction objectives. Since the discovery of the giant electrocaloric effect in 2006
electrocaloric cooling technology has undergone rapid development
particularly in improvements in electrocaloric materials and devices. This article provides an analysis and discussion focused on electrocaloric cooling device research
electrocaloric polymer nanocomposite materials
and high-entropy optimization of electrocaloric materials. It commences by introducing the fundamental principles of the electrocaloric effect and current advancements in active regenerative electrocaloriccooling devices. Subsequently
it summarizes the progress in electrocaloric polymer nanocomposite materials
along with strategies for high-entropy optimization and interface polarization enhancement. Finally
it provides insights into future research directions for electrocaloric cooling within the fields of working substances and systems.
电卡制冷技术复合材料柔性制冷器件热力学循环零碳制冷与热泵
electrocaloric cooling technologycomposite materialsflexible refrigeration devicesthermodynamic cycleszero-carbon refrigeration and heat pumps
ZHAO Xin, MA Xiaowei, CHEN Boyang, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959.
DONG Yabin, COLEMAN M, MILLER S A. Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries[J]. Annual Review of Environment and Resources, 2021, 46: 59-83.
TUŠEK J, ENGELBRECHT K, ERIKSEN D, et al. A regenerative elastocaloric heat pump[J]. Nature Energy, 2016, 1(10): 16134.
钱苏昕, 袁丽芬, 晏刚, 等. 弹热制冷技术的发展现状与展望[J]. 制冷学报, 2018, 39(1): 1-12. (
QIAN Suxin, YUAN Lifen, YAN Gang, et al. State-of-the-art and prospects of elastocaloric cooling technology[J]. Journal of Refrigeration, 2018, 39(1): 1-12.)
BO Yiwen, ZHANG Quan, CUI Heng, et al. Electrostatic actuating double-unit electrocaloric cooling device with high efficiency[J]. Advanced Energy Materials, 2021, 11(13): 2003771.
MA Rujun, ZHANG Ziyang, TONG K, et al. Highly efficient electrocaloric cooling with electrostatic actuation[J]. Science, 2017, 357(6356): 1130-1134.
宋睿琪, 张志东, 李昺. 压卡制冷材料及技术的现状与展望[J]. 制冷学报, 2022, 43(4): 35-43. (
SONG Ruiqi, ZHANG Zhidong, LI Bing. Status and prospect of barocaloric materials and refrigeration technology[J]. Journal of Refrigeration, 2022, 43(4): 35-43.)
RUSS B, GLAUDELL A, URBAN J J, et al. Organic thermoelectric materials for energy harvesting and temperature control[J]. Nature Reviews Materials, 2016, 1(10): 16050.
MOYA X, MATHUR N D. Caloric materials for cooling and heating[J]. Science, 2020, 370(6518): 797-803.
HOU Huilong, QIAN Suxin, TAKEUCHI I. Materials, physics and systems for multicaloric cooling[J]. Nature Reviews Materials, 2022, 7: 633-652.
THACHER P D. Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr,Ti)O3 compounds[J]. Journal of Applied Physics, 1968, 39(4): 1996-2002.
LU Shengguo, ZHANG Qiming. Electrocaloric materials for solid-state refrigeration[J]. Advanced Materials, 2009, 21(19): 1983-1987.
MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270-1271.
NEESE B, CHU Baojin, LU Shengguo, et al. Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science, 2008, 321(5890): 821-823.
KUTNJAK Z, ROŽIČ B, PIRC R. Electrocaloric effect: theory, measurements, and applications[M]//WEBSTER J G.Wiley Encyclopedia of Electrical and Electronics Engineering. New York : John Wiley, 2015: 1-19.
李子超, 施骏业, 陈江平, 等. 电卡制冷材料与系统发展现状与展望[J]. 制冷学报, 2021, 42(1): 1-13. (
LI Zichao, SHI Junye, CHEN Jiangping, et al. Electrocaloric cooling materials and systems: a review and perspective[J]. Journal of Refrigeration, 2021, 42(1): 1-13.)
SHI Junye, HAN Donglin, LI Zichao, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200-1225.
CAI Yu, LI Qiang, DU Feihong, et al. Polymeric nanocomposites for electrocaloric refrigeration[J]. Frontiers in Energy, 2023, 17(4): 450-462.
TORELLÓ A, DEFAY E. Electrocaloric coolers: a review [J]. Advanced Electronic Materials, 2022, 8(6): 2101031.
LI Junning, TORELLÓ A, KOVACOVA V, et al. High cooling performance in a double-loop electrocaloric heat pump[J]. Science, 2023, 382(6672): 801-805.
QIAN Xiaoshi, WU Shan, FURMAN E, et al. Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges[J]. MRS Communications, 2015, 5(2): 115-129.
WANG Ziyuan, BO Yiwen, BAI Peijia, et al. Self-sustaining personal all-day thermoregulatory clothing using only sunlight[J]. Science, 2023, 382(6676): 1291-1296.
QIAN Xiaoshi. Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration[J]. Frontiers in Energy, 2022, 16(1): 19-22.
KOBEKO P, KURTSCHATOV J. Dielektrische eigens-chaften der seignettesalzkristalle[J]. Zeitschrift Für Physik, 1930, 66(3): 192-205.
SINYAVSKY Y V, PASHKOV N D, GOROVOY Y M, et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration[J]. Ferroelectrics, 1989, 90(1): 213-217.
QIAN Xiaoshi, CHEN Xin, ZHU Lei, et al. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion[J]. Science, 2023, 380(6645): eadg0902.
GU Haiming, QIAN Xiaoshi, LI Xinyu, et al. A chip scale electrocaloric effect based cooling device[J]. Applied Physics Letters, 2013, 102: 122904.
PLAZNIK U, KITANOVSKI A, ROŽIČ B, et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device[J]. Applied Physics Letters, 2015, 106(4): 043903.
NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature, 2019, 575(7783): 468-472.
TORELLÓ A, LHERITIER P, USUI T, et al. Giant temperature span in electrocaloric regenerator[J]. Science, 2020, 370(6512): 125-129.
WANG Yunda, ZHANG Ziyang, USUI T, et al. A high-performance solid-state electrocaloric cooling system[J]. Science, 2020, 370(6512): 129-133.
BRADEŠKO A, JURIČIĆ D, SANTO ZARNIK M, et al. Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration[J]. Applied Physics Letters, 2016, 109(14): 143508.
MENG Yuan, ZHANG Ziyang, WU Hanxiang, et al. A cascade electrocaloric cooling device for large temperature lift[J]. Nature Energy, 2020, 5: 996-1002.
ZHANG Chao, DU Quanpei, LI Wenru, et al. High electrocaloric effect in barium titanate-sodium niobate ceramics with core-shell grain assembly[J]. Journal of Materiomics, 2020(3): 618-627.
LI Wenru, JAFRI H M, ZHANG Chao, et al. The strong electrocaloric effect in molecular ferroelectric ImClO4 with ultrahigh electrocaloric strength[J]. Journal of Materials Chemistry A, 2020, 8(32): 16189-16194.
QIAN Jianfeng, PENG Renci, SHEN Zhonghui, et al. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation[J]. Advanced Materials, 2019, 31(5): e1801949.
XU Haisheng, CHENG Z Y, OLSON D, et al. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer[J]. Applied Physics Letters, 2001, 78(16): 2360-2362.
ZHANG Guangzu, ZHANG Xiaoshan, HUANG Houbing, et al. Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays[J]. Advanced Materials, 2016, 28(24): 4811-4816.
CHEN Yuqi, QIAN Jianfeng, YU Jinyao, et al. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites[J]. Advanced Materials, 2020, 32(30): e1907927.
LU Yuchen, YU Junyi, HUANG Jingyu, et al. Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading[J]. Applied Physics Letters, 2019, 114(23):233901.
YANG Lu, QIAN Xiaoshi, KOO C M, et al. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range[J]. Nano Energy, 2016, 22: 461-467.
JIANG Z Y, ZHENG X C, ZHENG G P. The enhanced electrocaloric effect in P(VDF-TrFE) copolymer with Barium strontium titanate nano-fillers synthesized via an effective hydrothermal method[J]. RSC Advances, 2015, 5(76): 61946-61954.
ZHANG Guangzu, WENG Lingxi, HU Zhaoyao, et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density[J]. Advanced Materials, 2019, 31(8): e1806642.
ZHANG Guangzu, ZHANG Xiaoshan, YANG Tiannan, et al. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured Barium strontium titanates[J]. ACS Nano, 2015, 9(7): 7164-7174.
ZHANG Guangzu, FAN Baoyan, ZHAO Peng, et al. Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency[J]. ACS Applied Energy Materials, 2018, 1(3): 1344-1354.
ZHANG Guangzu, LI Qi, GU Haiming, et al. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration[J]. Advanced Materials, 2015, 27(8): 1450-1454.
LI Qi, ZHANG Guangzu, ZHANG Xiaoshan, et al. Relaxor ferroelectric-based electrocaloric polymer nanocom-posites with a broad operating temperature range and high cooling energy[J]. Advanced Materials, 2015, 27(13): 2236-2241.
HAN Donglin, DU Feihong, ZHANG Yingjing, et al. Molecular interface regulation enables order-disorder synergy in electrocaloric nanocomposites[J]. Joule, 2023, 7(9): 2174-2190.
CHEN Xiangzhong, LI Xinyu, QIAN Xiaoshi, et al. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer[J]. Polymer, 2013, 54(20): 5299-5302.
MOROZOVSKA A N, ELISEEV E A, GLINCHUK M D, et al. Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles[J]. Physical Review Materials, 2019, 3(10): 104414.
YANG Minzheng, LI Haoyang, WANG Jian, et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 ℃[J]. Nature Energy, 2024, 9: 143-153.
QIAN Xiaoshi, HAN Donglin, ZHENG Lirong, et al. High-entropy polymer produces a giant electrocaloric effect at low fields[J]. Nature, 2021, 600(7890): 664-669.
ZHENG Shanyu, DU Feihong, ZHENG Lirong, et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer[J]. Science, 2023, 382(6674): 1020-1026.
PU Yongping, ZHANG Qianwen, LI Run, et al. Dielectric properties and electrocaloric effect of high-entropy(Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic[J]. Applied Physics Letters, 2019, 115(22):223901.
0
Views
33
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution