浏览全部资源
扫码关注微信
中国科学院理化技术研究所 北京 100190
Dai Wei, male, professor, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 86-13520933963, E-mail: cryodw@mail.ipc.ac.cn. Research fields: Stirling-type cryocoolers, ultra-low temperature cryocoolers, solid-state refrigeration, and high-power density heat transfer.
Published:16 December 2024,
Received:29 June 2024,
Revised:15 August 2024,
Accepted:2024-08-15
移动端阅览
DAI WEI, PAN TENG, ZHAO PENG, et al. Brief Review of Sub-Kelvin Refrigeration Technology. [J]. Journal of refrigeration, 2024, 45(6): 1-13.
DAI WEI, PAN TENG, ZHAO PENG, et al. Brief Review of Sub-Kelvin Refrigeration Technology. [J]. Journal of refrigeration, 2024, 45(6): 1-13. DOI: 10.12465/j.issn.0253-4339.2024.06.001.
极低温制冷技术(<1 K)是前沿物理研究和量子技术等领域重要的支撑技术,目前主要包括吸附制冷、稀释制冷和绝热去磁制冷。吸附制冷受限于其蒸发制冷的原理,最低温高于200 mK,而稀释制冷和绝热去磁制冷可以获得10 mK以下的最低温。前者能够在20~100 mK提供较大连续冷量,而后者基于固态制冷,可以在空间微重力下高效运行。本文主要简要介绍了这3种技术的原理、发展历史以及技术展望。
Sub-Kelvin refrigeration technology (<1 K) is a critical supporting technology for cutting-edge physics research and quantum technology. Currently
it mainly includes adsorption refrigeration
dilution refrigeration
and adiabatic demagnetization refrigeration. Adsorption refrigeration is limited by its evaporative cooling principle
with the lowest temperature higher than 200 mK. Dilution refrigeration and adiabatic demagnetization refrigeration can achieve temperatures below 10 mK. The former can provide a larger continuous cooling capacity between 20 mK and 100 mK
while the latter
based on solid-state refrigeration
can operate efficiently under a microgravity environment. This article briefly introduces the principles
development history
and technical prospects of these three technologies.
极低温制冷技术吸附稀释绝热去磁
sub-Kelvin refrigeration technologyadsorptiondilutionadiabatic demagnetization
POBELL F. Matter and methods at low temperatures[M]. Berlin, Heidelberg: Springer Berlin/Heidelberg,1992.
KEMPPINEN A, RONZANI A, MYKKÄNEN E, et al. Cascaded superconducting junction refrigerators: optimization and performance limits[J]. Applied Physics Letters, 2021, 119(5):052603.
TORRE J P, CHANIN G. Miniature liquid-3He refrigerator[J]. Review of Scientific Instruments, 1985, 56(2): 318-320.
DUBAND L, HUI L, LANGE A. Space-borne 3He refrigerator[J]. Cryogenics, 1990, 30(3): 263-270.
DUBAND L, LANGE A, BOCK J. Helium adsorption coolers for space[J]. Submillimetre and Far-Infrared Space Instrumentation, 1996, 388: 289-292.
DUBAND L, CLERC L, GUILLEMET L, et al. HERSCHEL sorption cooler qualification models[C]//Proceedings of the Cryocoolers 13. Boston, MA: Springer, 2005:543-551.
BOCK J J, DUBAND L, KAWADA M, et al. 4He refrigerator for space[J]. Cryogenics, 1994, 34: 635-640.
DUBAND L, COLLAUDIN B. Sorption coolers development at CEA-SBT[J]. Cryogenics, 1999, 39(8): 659-663.
DALL′OGLIO G, PIZZO L, PICCIRILLO L, et al. New 3He/4He refrigerator[J]. Cryogenics, 1991, 31(1): 61-63.
DUBAND L. Double stage helium sorption coolers[M]// ROSS R G. Cryocoolers 11. Boston, MA: Springer US., 2002:561-566.
DUBAND L, CLERC L, RAVEX A. Socool: a 300 K-0.3 K pulse tube/sorption cooler[J]. Advances in Cryogenic Engineering, 2002, 613: 1233-1240.
DUBAND L, PROUVÉ T, BOCK J, et al. Sub-Kelvin cooling for the BICEP array project[C]//Proceedings of the 20th International Cryocooler Conference. Burlington, 2018.
AHMED Z, AMIRI M, BENTON S J, et al. BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization[C]//Proceedings of SPIE Conference on Millimeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy. Montreal,2014.
KLEMENCIC G M, ADE P A R, CHASE S, et al. A continuous dry 300 mK cooler for THz sensing applications[J]. The Review of Scientific Instruments, 2016, 87(4): 045107.
BRIEN T L R, CASTILLO-DOMINGUEZ E, CHASE S, et al. A continuous 100-mK helium-light cooling system for MUSCAT on the LMT[J]. Journal of Low Temperature Physics, 2018, 193(5): 805-812.
BRIEN T L R, DOYLE S, HUGHES D H, et al. The Mexico UK Sub-mm Camera for Astronomy (MUSCAT) on-sky commissioning: performance of the cryogenic systems[C]//Proceedings of Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy. Montreal, 2022.
RONSON E, CHASE S, KENNY L. A compact, low-power <1 K cooling platform for superconducting nanowire detectors[J]. Journal of Physics: Conference Series, 2020, 1559(1): 012007.
Chase Research Cryogenics[EB/OL].[2024-03-01]. https://www.chasecryogenics.com/https://www.chasecryogenics.com/.
CHASE S, KENNY L, RONSON E. Study of uniformity and reproducibility in the performance of helium-4 sorption coolers[J]. Journal of Low Temperature Physics, 2020, 199(3/4): 1148-1157.
罗宝军, 王兆利, 闫涛, 等. 一种空间极低温吸附制冷机的设计与实现[J]. 宇航学报, 2015, 36(7): 855-860. (
LUO Baojun, WANG Zhaoli, YAN Tao, et al. Design and implementation of a space sub-Kelvin sorption cooler[J]. Journal of Astronautics, 2015, 36(7): 855-860.)
XI Xiaotong, YANG Biao, GAO Zhaozhao, et al. Study on the coupling characteristics of sub-Kelvin sorption cooler and 4 K stirling-type pulse tube cryocooler with small cooling capacity[J]. Journal of Low Temperature Physics, 2023, 210(1): 376-392.
DEBYE P. Einige bemerkungen zur magnetisierung bei tiefer temperatur[J]. Annalen Der Physik, 1926, 386(25): 1154-1160.
GIAUQUE W F. A thermodynamic treatment of certain magnetic effects: a proposed method of producing temperatures considerably below 1° absolute[J]. Journal of the American Chemical Society, 1927, 49(8): 1864-1870.
GIAUQUE W F, MACDOUGALL D P. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O[J]. Physical Review, 1933, 43(9): 768.
ARP V D, KROPSCHOT R H. Simple adiabatic demagnetization apparatus[J]. Review of Scientific Instruments, 1961, 32(2): 217-218.
BISHOP J H, CUTTER D W, MOTA A C, et al. Thermal contact between cerium magnesium nitrate and liquid 3He at very low temperatures[J]. Journal of Low Temperature Physics, 1973, 10(3): 379-395.
WU C S, AMBLER E, HAYWARD R W, et al. Experimental test of parity conservation in beta decay[J]. Physical Review, 1957, 105(4): 1413-1415.
HAGMANN C, RICHARDS P L. Adiabatic demagnetization refrigerators for small laboratory experiments and space astronomy[J]. Cryogenics, 1995, 35(5): 303-309.
TIMBIE P T, BERNSTEIN G M, RICHARDS P L. Development of an adiabatic demagnetization refrigerator for SIRTF[J]. Cryogenics, 1990, 30(3): 271-275.
BRASILIANO D A P, DUVAL J-M, LUCHIER N, et al. Development of a 3-Stage ADR for Space including CCA 50 mK Characterization[C]//Proceedings of ICC 19 International Cryocooler Conference. San Diego, 2016.
SHIRRON P, CANAVAN E, DIPIRRO M, et al. Development of a cryogen-free continuous ADR for the constellation-X mission[J]. Cryogenics, 2004, 44(6-8): 581-588.
SHIRRON P, WEGEL D, DIPIRRO M. A continuous adiabatic demagnetization refrigerator for cooling to 10 mK and below[C]//AIP Conference Proceedings. Orlando, 2006, 850: 1573-1574.
戴巍, 刘萍, 李珂, 等. 一种多恒温级型绝热去磁制冷机: 2023113367817[P].2023-12-05.(
DAI Wei, LIU Ping, LI Ke, et al. A multi-constant temperature stage adiabatic demagnetization refrigerator: 2023113367817[P].2023-12-05.)
ADR cryostat installation and operation manual[EB/OL].[2024-06-01].www.hpd-online.com/www.hpd-online.com/.
钱永嘉, 冉启泽. 极低温度的获得方法——波墨朗丘克制冷和核绝热去磁[J].物理,1980,9(2):179-183.(
QIAN Yongjia, RAN Qize. Methods for obtaining extremely low temperatures-Pomeranian cooling and nuclear adiabatic demagnetization[J].Physics,1980,9(2):179-183.)
ABE S, MATSUMOTO K. Nuclear demagnetization for ultra-low temperatures[J]. Cryogenics, 2014, 62: 213-220.
YAO W, KNUUTTILA T A, NUMMILA K K, et al. A versatile nuclear demagnetization cryostat for ultralow temperature research[J]. Journal of Low Temperature Physics, 2000, 120(1): 121-150.
TODA R, MURAKAWA S, FUKUYAMA H. Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications[J]. Journal of Physics: Conference Series, 2018, 969: 012093.
TAKIMOTO S, TODA R, MURAKAWA S, et al. Construction of continuous magnetic cooling apparatus with zinc-soldered PrNi5 Nuclear stages[J]. Journal of Low Temperature Physics, 2022, 208(5/6): 492-500.
TOKIWA Y, BACHUS S, KAVITA K, et al. Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures[J]. Communications Materials, 2021, 2: 42.
XIANG Junsen, ZHANG Chuandi, GAO Yuan, et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2[J]. Nature, 2024, 625(7994): 270-275.
WIKUS P, CANAVAN E, HEINE S T, et al. Magnetocaloric materials and the optimization of cooling power density[J]. Cryogenics, 2014, 62: 150-162.
DIPIRRO M J, SHIRRON P J. Heat switches for ADRs [J]. Cryogenics, 2014, 62: 172-176.
BARTLETT J, HARDY G, HEPBURN I D. Performance of a fast response miniature adiabatic demagnetisation refrigerator using a single crystal tungsten magnetoresistive heat switch[J]. Cryogenics, 2015, 72: 111-121.
KIMBALL M, SHIRRON P, JAMES B, et al. Low-power, fast-response active gas-gap heat switches for low temperature applications[J]. IOP Conference Series: Materials Science and Engineering, 2015, 101: 012157.
SHIRRON P J, KIMBALL M O. Active gas-gap heat switch with fast thermal response:14842939[P]. 2017-03-02.
DE WAELE A T A M. Basic operation of cryocoolers and related thermal machines[J]. Journal of Low Temperature Physics, 2011, 164(5): 179-236.
LONDON H. Proceedings of the international conference on low temperature physics (LT2)[C]. Oxford, UK,1951.
DAS T P, OUBOTER R D B, TACONIS K W. Proceedings of the 9th international conference on low-temperature physics[C]. New York: Plenum Press, 1965.
NEGANOV B, BORISOV N, LIBURG M. A method for obtaining low temperatures based on dissolution of 3He in 4He[J]. JETP, 1966,50:1445-1457.
HALL H E, FORD P J, THOMPSON K. A helium-3 dilution refrigerator[J]. Cryogenics, 1966, 6(2): 80-88.
NIINIKOSKI T O. A horizontal dilution refrigerator with very high cooling power[J]. Nuclear Instruments and Methods, 1971, 97(1): 95-101.
COUSINS D J, FISHER S N, GUÉNAULT A M, et al. An advanced dilution refrigerator designed for the new Lancaster microkelvin facility[J]. Journal of Low Temperature Physics, 1999, 114(5): 547-570.
DE WAELE A T A M, REEFERS A B, GIJSMAN H M. A 3He circulating dilution refrigerator with two mixing chambers[J]. Physica B+C, 1976, 81(2): 323-324.
DE WAELE A T A M, REEKERS A B, GIJSMAN H M. Recent Advances in Dilution Refrigeration [M]//TRICKEY S B, ADAMS E D, DUFTY J W. Quantum Fluid and Solids. New York: Plenum Press, 1977: 451-463.
PARI P. Dilution refrigerator with no liquid helium supply[M]//FAST R W. Advances in Cryogenic Engineering: Part A & B. Boston, MA: Springer, 1990: 1079-1086.
UHLIG K, HEHN W. 3He/4He dilution refrigerator with Gifford-McMahon precooling[J]. Cryogenics, 1993, 33(11): 1028-1031.
UHLIG K. “Dry” dilution refrigerator with pulse-tube precooling[J]. Cryogenics, 2004, 44(1): 53-57.
UHLIG K. Cryogen-free dilution refrigerators[J]. Journal of Physics: Conference Series, 2012, 400(5): 052039.
HATA T, MATSUMOTO T, OBARA K, et al. Development and comparison of two types of cryogen-free dilution refrigerator[J]. Journal of Low Temperature Physics, 2014, 175(1): 471-479.
UMENO T, MAEHATA K, ISHIBASHI K, et al. Operation of a TES microcalorimeter cooled by a compact liquid-helium-free 3He-4He dilution refrigerator directly coupled to a Gifford-McMahon cooler[J]. Cryogenics, 2010, 50(5): 314-319.
BLUEFORS [EB/OL].[2024-06-01].https://bluefors.comhttps://bluefors.com.
INSTRUMENT O. Oxford instrument company [EB/OL].[2024-06-01].https://www.tonghui.com.cn/en/product_808.htmlhttps://www.tonghui.com.cn/en/product_808.html.
TACONIS K W, PENNINGS N H, DAS P, et al. A 4He-3He refrigerator through which 4He is circulated[J]. Physica, 1971, 56(1): 168-170.
SATOH N, SATOH T, OHTSUKA T, et al. 4He-circulating dilution refrigerator[J]. Journal of Low Temperature Physics, 1987, 67(3): 195-224.
EDEL′MAN V S. A dilution refrigerator with condensation pump[J]. Cryogenics, 1972, 12(5): 385-387.
SIVOKON V E, DOTSENKO V V, POGORELOV L A, et al. Dilution refrigerator with condensation pumping[J]. Cryogenics, 1992, 32: 207-210.
TELEBERG G, CHASE S T, PICCIRILLO L. A miniature dilution refrigerator for sub-Kelvin detector arrays[C]// Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III. Orlando, FL, 2006.
PROUVÉ T, LUCHIER N, DUBAND L. Pocket Dilution Cooler[C]//15th Internation Cryocooler Conference. California, US, 2008: 497-503.
ZU Hongye, CHENG Weijun, WANG Yanan, et al. Numerical investigation of a condensation-driven dilution refrigerator[J]. International Journal of Refrigeration, 2023, 151: 228-240.
MIKHEEV V A, MAIDANOV V A, MIKHIN N P. Compact dilution refrigerator with a cryogenic circulation cycle of He3[J]. Cryogenics, 1984, 24(4): 190.
MOHANDAS P, COWAN B P, SAUNDERS J, et al. Continuously operating cryogenic cycle dilution refrigerator[J]. Physica B: Condensed Matter, 1994, 194-196: 55-56.
MELHUISH S J, MARTINIS L, PICCIRILLO L. A tiltable single-shot miniature dilution refrigerator for astrophysical applications[J]. Cryogenics, 2013, 55-56: 63-67.
BRISSON J G. Cold-cycle dilution refrigeration[J]. Journal of Low Temperature Physics, 1998, 111(1): 181-199.
MUELLER B W, MILLER F K. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator[J]. Cryogenics, 2016, 79: 85-95.
VONCKEN A P J, DE WAELE A T A M. Adiabatic expansion of 3He in 4He at very low temperatures[J]. Journal of Low Temperature Physics, 1995, 100(5): 463-499.
ISRAELSSON U E, PETRAC D. Dilution refrigeration for space applications[J]. Cryogenics, 1990, 30(3): 257-262.
BENOÎT A. France patent:8801232 [P/OL]. 1988[2024-06-01]. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Centre_National_D_Etudes_Spatiales_CNEShttps://www.esa.int/Enabling_Support/Space_Engineering_Technology/Centre_National_D_Etudes_Spatiales_CNES.
BENOÎT A, PUJOL S. Dilution refrigerator for space applications with a cryocooler[J]. Cryogenics, 1994, 34(5): 421-423.
TRIQUENEAUX S, SENTIS L, CAMUS P, et al. Design and performance of the dilution cooler system for the Planck mission[J]. Cryogenics, 2006, 46(4): 288-297.
MARTIN F, VERMEULEN G, CAMUS P, et al. A closed cycle 3He-4He dilution refrigerator insensitive to gravity[J]. Cryogenics, 2010, 50(9): 623-627.
CHAUDHRY G, VOLPE A, CAMUS P, et al. A closed-cycle dilution refrigerator for space applications[J]. Cryogenics, 2012, 52(10): 471-477.
GUMANN P, CHOW J. IBM scientists cool down the world′s largest quantum-ready cryogenic concept system[EB/OL]. (2022-09-08)[2024-06-01].https://www.ibm.com/quantum/blog/goldeneye-cryogenic-concept-systemhttps://www.ibm.com/quantum/blog/goldeneye-cryogenic-concept-system.
DOE/Fermi National Accelerator Laboratory. It′s colossal: Creating the world′s largest dilution refrigerator[EB/OL]. (2022-12-14)[2024-06-01]. https://www.eurekalert.org/news-releases/974391https://www.eurekalert.org/news-releases/974391.
UHLIG K. Dry dilution refrigerator with pulse tube shutoff option[J]. Cryogenics, 2023, 130: 103649.
POBELL F. Matter and methods at low temperatures[M]. 3rd ed. Berlin: Springer, 2007.
ODA Y, FUJII G, ONO T, et al. Practical design of heat exchangers for dilution refrigerators: part 2[J]. Cryogenics, 1983, 23(3): 139-147.
NAKAGAWA H, MISEKI Y, AKOSHIMA M. Gas adsorption, thermal and structural properties of sinters made of fine silver powder for ultra-low-temperature heat exchangers[J]. Cryogenics, 2019, 102: 1-8.
SALMELA A, SALMELAAN. Heat exchanger material for use in heat exchangers of cryogenic cooling systems, comprises solid material rendered into its final form in additive manufacturing process: WO2021229148-A1[P]. 2021-12-02.
TILLEMANN-DICK C, THOMPSON K, OGANDO DOS SANTOS ALLAN J, et al. Dilution refrigerator, has integrated heat exchanger comprising channels formed in thermalization plate, where channels are configured to allow helium to flow through plate during operation of dilution refrigerator: WO2023283431-A1 [P]. 2023-01-29.
WHEATLEY J C, RAPP R E, JOHNSON R T. Principles and methods of dilution refrigeration. II[J]. Journal of Low Temperature Physics, 1971, 4(1): 1-39.
WHEATLEY J C, VILCHES O E, ABEL W R. Principles and methods of dilution refrigeration[J]. Physics Physique Fizika, 1968, 4(1): 1-64.
SIEGWARTH J D, RADEBAUGH R. Analysis of heat exchangers for dilution refrigerators[J]. Review of Scientific Instruments, 1971, 42(8): 1111-1119.
KUERTEN J G M, CASTELIJNS C A M, DE WAELE A T A M, et al. Thermodynamic properties of liquid 3He-4He mixtures at zero pressure for temperatures below 250 mK and 3He concentrations below 8%[J]. Cryogenics, 1985, 25(8): 419-443.
CHAUDHRY G, BRISSON J G. Thermodynamic properties of liquid 3He-4He mixtures between 0.15 K and 1.8 K[J]. Journal of Low Temperature Physics, 2009, 155(5): 235-289.
LAWSON C R, JONES A T, KOCKELMANN W, et al. Neutron imaging of an operational dilution refrigerator[J]. Scientific Reports, 2022, 12(1): 1130.
0
Views
66
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution