浏览全部资源
扫码关注微信
1.东南大学能源与环境学院,江苏省南京市210000
2.河北卓派新能源开发有限公司,河北省石家庄市050000
Received:14 December 2024,
Revised:31 December 2024,
Accepted:2025-01-03
移动端阅览
YANG SHUCHUAN, YIN YONGGAO, LI XIAO, et al. Practice and Optimization of Seasonal/Daily Composite Thermal Energy Storage Technology Based on Lakes/Rivers. [J/OL]. Moren journal, 2025.
在低/零碳供暖背景下,热泵技术因其电热转换的高效性,成为中低温供暖领域的必然路径。然而北方冬季缺少稳定热源,因此需要将城市范围内的热源进行跨季节存储,以保证热泵系统供暖的稳定性。针对当前热源存在的局限性、跨天蓄热考虑的不足,本文基于馆陶地区河水跨季节/天储热工程,利用TRNSYS搭建了跨季节/天仿真模型,研究了系统的长期运行性能,并对埋管间距、河水流量、水箱容积进行了匹配优化。结果表明:运行10年后,蓄热体温升达到3.2℃,储热效率上升到98%。针对蓄热体设计方面,在采用大蓄热体与较大流量配置时,获得相同热量的耗功更小。在水箱设计方面,合适的水箱容积与控制策略可以更大程度发挥谷电利用的优势。经过优化后的跨季节/天系统相较跨季节系统可减少约28.7%的运行费用,具备良好的经济效益。
In the context of low/zero-carbon heating
heat pump technology has emerged as the inevitable path in the field of medium and low-temperature heating due to their high efficiency in electrical-to-thermal energy conversion. However
due to the lack of stable heat sources in northern winter
it is necessary to store the heat sources within the urban area across seasons to ensure the stability of heating provided by the heat pump system. To address the current limitations of heat sources and the inadequate consideration of daily heat storage
this paper combines the seasonal/daily heat storage project of river water in the Guantao
builds a modeling and simulation platform by using TRNSYS
studies the system's long-term operation performance
and matches and optimizes the buried pipe spacing
river water flow rate
and water tank volume. The results show that after 10 years of operation
the temperature rise of the thermal storage unit reaches 3.2°C
and the heat storage efficiency rises to 98%. For the design of the thermal storage unit
under the large thermal storage unit and larger river water flow
the power consumption to obtain the same heat is smaller. For the tank design
the right tank volume and control strategy can avoid more initial investment and energy consumption. The optimized seasonal/daily thermal storage system can reduce the annual operating cost by about 28.8% compared to the seasonal thermal storage system
which has a good economic benefit.
跨季节储热河水峰谷电价TRNSYS
seasonal thermal energy storageriver waterpeak-valley electricity priceTRNSYS
凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(03): 861-8.
LING Haoshu, HE Jingdong, XU Yujie, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(03): 861-8.
姚华, 黄云, 徐敬英, 等. 我国北方地区清洁供暖技术现状与问题探讨[J]. 中国科学院院刊, 2020, 35(09): 1177-88.
YAO Hua, HUANG Yun, XU Jingyun, et al. Technology status and discussion on challenges of clean heating in northern China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(09): 1177-88.
聂海宁, 黄小琳, 曾智勇. 中国清洁能源供热现状及发展前景[J]. 能源与节能, 2018, (12): 87-9.
NIE Haining, HUANG Xiaolin, ZENG Zhiyong. Present situation and development prospect of clean energy heating in China[J]. Energy and Energy Conservation, 2018, (12): 87-9.
王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5): 47-54.
WANG Fenghao, WANG Zhihua, ZHENG Yuxin, et al. Research progress and prospect of air source heat pump in low temperature environment[J]. Journal of Refrigeration, 2013, 34(5): 47-54.
Guo J J, Wu J Y, Wang R Z, et al. Experimental research and operation optimization of an air-source heat pump water heater[J]. Applied Energy, 2011, 88(11): 4128-4138.
JIANG K, ZHANG W. The operation strategy of river water source heat pump cold source system in a chemical industrial park in a region with hot summers and cold winters[J]. Desalination and Water Treatment, 2024, 319: 100483.
JUNG Y, KIM J, KIM H, et al. Comprehensive feasibility investigation of river source heat pump systems in terms of life cycle[J]. Applied Thermal Engineering, 2021, 188: 116655.
李舒宏, 张小松, 杨伟华, 等. 多功能地源热泵埋管周围土壤的温度变化特性[J]. 东南大学学报(自然科学版), 2010, 40(05): 979-84.
LI Shuhong, ZHANG Xiaosong YANG Weihua, et al. Temperature variation of soil around underground heat exchangers of multi-function ground source heat pump system[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(05): 979-84.
杨卫波, 陈振乾, 施明恒. 跨季节蓄能型地源热泵地下蓄能与释能特性[J]. 东南大学学报(自然科学版), 2010, 40(05): 973-8.
YANG Weibo, CHEN Zhenqian, SHI Mingheng. Underground energy storage and release characteristics of ground source heat pump with seasonal energy storage[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(05): 973-8.
WANG X, ZHANG H, CUI L, et al. Borehole thermal energy storage for building heating application: A review[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114772.
ZHAO X, LI Y, CHEN X, et al. Ten differences of seasonal borehole thermal energy storage system from ground-source heat pump system[J]. Energy and Buildings, 2024, 325: 114994.
冯国会, 张磊, 常莎莎, 等. 严寒地区太阳能跨季节蓄热-地源热泵耦合系统性能研究[J]. 暖通空调, 2021, 51(S1): 202-6.
FENG Guohui, ZHANG Lei, CHANG Shasha, et al. Research on the performance of solar energy seasonal thermal energy storage coupled with ground source heat pump systems in severe cold regions[J]. Heating Ventilating & Air Conditioning, 2021, 51(S1): 202-6.
窦子慧, 刘景霞, 李宝利. 严寒地区太阳能跨季节蓄热热泵系统研究[J]. 综合智慧能源, 2023, 45(04): 52-8.
DOU Zihui, LIU Jingxia, LI Baoli. Study on the solar-assisted ground-source heat pump system with seasonalheat storage in cold regions[J]. Integrated Intelligent Energy, 2023, 45(04): 52-8.
山强, 杨绪飞, 吴小华, 等. 太阳能跨季节蓄热增强土壤源热泵供暖系统建模与仿真研究[J]. 可再生能源, 2022, 40(8): 1028-37.
SHAN Qiang, YANG Xufei, WU Xiaohua, et al. Research on modeling and simulation of ground source heat pump heating system with seasonal solar thermal energy storage enhancement[J]. Renewable Energy Resources, 2022, 40(8): 1028-37.
GROSSI A M, GIAN LUCA. Dynamic modelling and energy performance analysis of an innovative dual-source heat pump system[J]. Applied thermal engineering: Design, processes, equipment, economics, 2018, 142.
JRADI M, VEJE C, JRGENSEN B N. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector[J]. Applied Thermal Engineering, 2017, 114: 360-73.
张姝, 郑茂余, 王潇, 等. 严寒地区跨季节空气-U形地埋管土壤蓄热特性模拟与实验验证[J]. 暖通空调, 2012, 42(03): 97-102.
ZHANG Shu, ZHENG Maoyu, WANG Xiao, et al. Simulation and experimental validation of soil seasonal thermal storage characteristics by air-U tube system in severe cold zone, Heating Ventilating & Air Conditioning, 2012, 42(03): 97-102.
方豪, 夏建军, 江亿. 北方采暖新模式:低品位工业余热应用于城镇集中供热[J]. 建筑科学, 2012, (S2): 5.
FANG Hao, XIA Jianjun JIANG Yi. New heating model in northern regions: Utilization of low-grade industrial waste heat for central heating in towns and cities[J]. Building Science, 2012, (S2): 5.
XU L, TORRENS J I, GUO F, et al. Application of large underground seasonal thermal energy storage in district heating system: A model-based energy performance assessment of a pilot system in Chifeng, China[J]. Applied Thermal Engineering, 2018, 137: 319-28.
WANG G, WANG W, LUO J, et al. Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 392-421.
SCHMIDT T, MANGOLDD, MUELLER-STEINHAGEN H. Central solar heating plants with seasonal storage in Germany[J]. Solar Energy, 2004, 76: 165-174.
Rapantova N, Pospisil P, Koziorek J, et al. Optimisation of experimental operation of borehole thermal energy storage[J]. Applied Energy, 2016, 181: 464-476.
Lanini S, Delaleux F, Py X, et al. Improvement of borehole thermal energy storage design based on experimental and modelling results[J]. Energy & Buildings, 2014, 77(77): 393-400.
张辉, 侯宏娟, 汉京晓, 等. 跨季节地埋管储热性能模拟及分析[J].工程热物理学报, 2022, 43(5):1148-1154.
ZAHNG Hui, HOU Wenjuan, HAN Jingxiao, et al. Simulation and Analysis of Performance of Seasonal Borehole Thermal Energy Storage[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1148-1154.
陈萨如拉, 常甜馨, 杨洋,等. 基于全局敏感性分析的跨季节埋管蓄热体热特性研究[J]. 流体机械, 2020, 48(11): 80-88.
CHEN Salula, CHANG Tianxin, YANG Yang, et al. Study on Thermal Characteristics of Seasonal Borehole Thermal Energy Storage Unit Based on Global Sensitivity Analysis [J]. Fluid Machinery, 2020, 48(11): 80-88.
GUO F, ZHU X Y, ZHANG J Y, et al. Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating[J]. Applied Energy, 2020, 264: 114763.
李克锋, 郝红升, 庄春义, 等. 利用气象因子估算天然河道水温的新公式[J]. 工程科学与技术, 2006, 38(1): 4.
LI Kefeng, HAO Hongsheng, ZHUANG Chunyi, et al. A new method for predicting water temperature of river by using meteorological factors[J]. Advanced Engineering Sciences, 2006, 38(1): 4.
SI P, LI A, RONG X, et al. New optimized model for water temperature calculation of river-water source heat pump and its application in simulation of energy consumption [J]. Renewable Energy, 2015, 84: 65-73.
白振营. 一个计算湖泊(水库)自然水温的新公式[J]. 水文, 1999, (03): 29-32.
BAI Zhenying. A new formula for calculating natural water temperature in lakes (reservoirs)[J]. Journal of China Hydrology, 1999, (03): 29-32.
王春林, 郭放, 朱永利, 等. 大规模太阳能跨季节土壤储热系统设计优化[J]. 太阳能学报, 2021, 42(04): 320-7.
WANG Chunlin, GUO Fang, ZHU Yongli, et al. Design and optimization of large-scale seasonal borehole thermal energy storage system for solar energy[J]. Acta Energiae Solaris Sinica, 2021, 42(04): 320-7.
吕超, 郑茂余. 土壤源热泵系统土壤热平衡的评价方法研究[J]. 制冷学报, 2016, 37(3): 42-47.
LV Chao, ZHENG Maoyu. Research on Evaluation Method of Soil Heat Balance of Ground-coupled Heat Pump System[J]. Journal of Refrigeration, 2016, 37(3): 42-47.
张思雨, 殷勇高,贾鹏琦,等. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1).
ZHANG Siyu, YIN Yonggao, JIA Pengqi, et al. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group[J]. CIESC Journal, 2023, 74(S1).
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution