引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1469次   下载 1596 本文二维码信息
码上扫一扫!
多级矩阵结构冷却除湿器的除湿性能研究
程兴旺,吴巧仙,方松,荣杨一鸣,周霞,植晓琴,王凯,邱利民,袁一军
0
(浙江大学制冷与低温研究所;杭州制氧机集团股份有限公司;杭州兴环科技有限公司)
摘要:
为了降低空分系统压缩机功耗,提高压缩机运行可靠性,本文提出一种用于压缩机进气除湿的多级矩阵结构的冷却除湿器,并搭建了多级冷却除湿实验台,测试了除湿器的除湿性能。实验结果表明,在进口空气含湿量和温度固定为11.7 g/(kg干空气)和24.4 ℃时,当空气质量流量由0.48 kg/s增至0.78 kg/s,空气出口含湿量由7.1 g/(kg干空气)增至7.7 g/(kg干空气);在进口空气质量流量和温度固定为0.53 kg/s和25.2 ℃时,当冷却水温度由6.9 ℃升至11.9 ℃,空气出口含湿量由7.1 g/(kg干空气)增至9.4 g/(kg干空气)。同时,建立了除湿器内部传热传质过程的稳态数值模型,将模拟结果与实验结果进行对比。结果表明,该模型对于除湿器出口空气含湿量和温度的平均误差分别为8.6%和2.1%,显示出较好的可靠性。进一步模拟研究了多级矩阵结构与单级叉流结构冷却除湿器的除湿性能,发现采用多级结构可以有效提高除湿效率,在进口空气流量和冷却水质量流量分别为0.53 kg/s和0.3 kg/s时,多级结构的除湿量可以提高4.3%,除湿效率可以提高2.5%;通过增加填料模块的长度,可以提高除湿效率。当长方体填料模块体积固定为0.054 m3,模块长度由0.14 m增至0.28 m时,传质系数可由4.3 g/(m2?s)增至6.5 g/(m2?s),除湿效率由66.4%升至79.2%。
关键词:  冷却除湿  填料塔  数值模拟  除湿效率
DOI:
投稿时间:2019-11-26  修订日期:2020-02-22  
基金项目:国家重点研发计划(2017YFB0603701)和国家自然科学基金(51636007)资助项目。
Research on Dehumidification Performance of a Cooling Dehumidifier with a MultistageMatrix Structure
Cheng Xingwang,Wu Qiaoxian,Fang Song,Rong Yangyiming,Zhou Xia,Zhi Xiaoqin,Wang Kai,Qiu Limin,Yuan Yijun
(Institute of Refrigeration and Cryogenics, Zhejiang University;Hangzhou Oxygen Plant Group Co., Ltd.;Hangzhou Xinghuan Co., Ltd.)
Abstract:
A multi-stage structure packing tower dehumidifier for feed air dehumidification in compressors is proposed to reduce the power consumption of compressors in cryogenic air separation systems. A multi-stage cooling and dehumidification experimental bench was built, and the dehumidification performance of the dehumidifier was examined experimentally. Experimental results indicated that when the air flow rate increased from 0.48 kg/s to 0.78 kg/s, the moisture content at the air outlet increased from 7.1 g/(kg dry air) to 7.7 g/(kg dry air) with the inlet moisture content and temperature maintained at 11.7 g/(kg dry air) and 24.4 °C, respectively. When the cooling water temperature increased from 6.9 °C to 11.9 °C, air outlet moisture content increased from 7.1 g/(kg dry air) to 9.4 g/(kg dry air) with the inlet air flow rate and temperature maintained at 0.53 kg/s and 25.2 °C, respectively. A steady-state numerical model of heat and mass transfer process in the dehumidifier was established and verified using the experimental data. A performance study of the multi-stage structure dehumidifier and single-stage cross-flow structure dehumidifier was conducted based on the numerical model. The results indicated that the dehumidification rate and dehumidification efficiency can be increased by 4.3% and 2.5%, respectively with the inlet air flow rate and water flow rate maintained at 0.53 kg/s and 0.3 kg/s, respectively. Additionally, the dehumidification performance can be improved by increasing the length of the packing module. The volume of the packing module was fixed at 0.054 m3.Hence, when the module length increased from 0.14 m to 0.28 m, the mass transfer coefficient increased from 4.3 g/(m2?s) to 6.5 g/(m2?s), and the dehumidification efficiency increased from 66.4%to 79.2%.
Key words:  cooling dehumidification  packing tower  numerical simulation  dehumidification efficiency

用微信扫一扫

用微信扫一扫